Subscribe to RSS
DOI: 10.1055/s-0028-1087518
Heterocyclizations via TosMIC-Based Multicomponent Reactions: A New Approach to One-Pot Facile Synthesis of Substituted Quinoxaline Derivatives
Publication History
Publication Date:
15 January 2009 (online)
Abstract
A novel multicomponent reaction involving o-phenylenediamines, aldehydes and p-toluenesulfonylmethyl isocyanide (TosMIC) in the presence of a base leading to the formation of quinoxalines in very good yields is described.
Key words
multicomponent reactions - TosMIC - quinoxalines
-
1a
Cheeseman GW.Cookson RF. In The Chemistry of Heterocyclic Compounds 2nd ed.:Weissberger A.Taylor EC. Wiley; New York: 1979. p.1 -
1b
Toshima K.Ozawa T.Kimura T.Matsumura S. Bioorg. Med. Chem. Lett. 2004, 14: 2777 -
1c
Carta A.Paglietti G.Nikookar MER.Sanna P.Sechi L.Zanetti S. Eur. J. Med. Chem. 2002, 37: 355 -
2a
Piras S.Loriga M.Paglietti G. Farmaco 2004, 59: 185 -
2b
Carta A.Loriga M.Zanetti S.Sechi LA. Farmaco 2003, 58: 1251 - 3
Ali MM.Ismail MMF.El-Gaby MSA.Zahran MA.Ammar YA. Molecules 2000, 5: 864 - 4
Sarges R.Howard HR.Browne RG.Lebel LA.Seymour PA.Koe BK. J. Med. Chem. 1990, 33: 2240 - 5
Sakata G.Makino K.Kurasawa Y. Heterocycles 1998, 27: 2481 - 6
Gomtsyan A.Bayburt EK.Schmidt RG.Zeng GZ.Perner RJ.Didomenico S.Koenig JR.Turner S.Jinkerson T.Drizin I.Hannick SM.Macri BS.McDonald HA.Honore P.Wismer CT.Marsh KC.Wetter J.Stewart KD.Oie T.Jarvis MF.Surowy CS.Faltynek CR.Lee C.-H. J. Med. Chem. 2005, 48: 744 - 7
Seitz LE.Suling WJ.Reynolds RC. J. Med. Chem. 2002, 45: 5604 - 8
Jaso A.Zarranz B.Aldana I.Monge A. J. Med. Chem. 2005, 48: 2019 - 9
He W.Myers MR.Hanney B.Spada AP.Bilder G.Galzcinski H.Amin D.Needle S.Page K.Jayyosi Z.Perrone MH. Bioorg. Med. Chem. Lett. 2003, 13: 3097 - 10
Kim YB.Kim YH.Park JY.Kim SK. Bioorg. Med. Chem. Lett. 2004, 14: 541 - 11
Myers MR.He W.Hanney B.Setzer N.Maguire MP.Zulli A.Bilder G.Galzcinski H.Amin D.Needle S.Spada AP. Bioorg. Med. Chem. Lett. 2003, 13: 3091 - 12
Pearlman WM. Org. Synth. 1969, 49: 75 -
13a
Katoh A.Yoshida T.Ohkanda J. In Heterocycles 2000, 52: 911 -
13b
Thomas KRJ.Velusamy M.Lin JT.Chuen C.-H.Tao Y.-T. Chem. Mater. 2005, 17: 1860 -
13c
Dailey S.Feast WJ.Peace RJ.Sage IC.Till S.Wood EL. J. Mater. Chem. 2001, 11: 2238 -
13d
Sascha O.Rüdiger F. Synlett 2004, 1509 -
13e
Sessler JL.Maeda H.Mizuno T.Lynch VM.Furuta H. J. Am. Chem. Soc. 2002, 124: 13474 -
13f
Crossley MJ.Johnston LA. Chem. Commun. 2002, 1122 -
14a
Brown DJ. Quinoxalines Supplements II, In The Chemistry of Heterocyclic CompoundsTaylor EC.Wipf P. John Wiley & Sons; New Jersey: 2004. -
14b
Bhosale RS.Sarda SR.Ardhapure SS.Jadhav WN.Bhusare SR.Pawar RP. Tetrahedron Lett. 2005, 46: 7183 -
14c
More SV.Sastry MNV.Yao C.-F. Green Chem. 2006, 8: 91 -
14d
Zhao Z.Wisnoski DD.Wolkenberg SE.Leister WH.Wang Y.Lindsley CW. Tetrahedron Lett. 2004, 45: 4873 - 15
Aparicio D.Attanasi OA.Filippone P.Ignacio R.Lillini S.Mantellini F.Palacios F.De los Santos JM. J. Org. Chem. 2006, 71: 5897 -
16a
Raw SA.Wilfred CD.Taylor RJK. Org. Biomol. Chem. 2004, 2: 788 -
16b
Kim SY.Park KH.Chung YK. Chem. Commun. 2005, 1321 -
16c
Robinson RS.Taylor RJK. Synlett 2005, 1003 -
16d
Cho CS.Oh SG. J. Mol. Catal. A: Chem. 2007, 276: 205 -
16e
Shaabani A.Maleki A. Chem. Pharm. Bull. 2008, 56: 79 -
17a
Singh SK.Gupta P.Duggineni S.Kundu B. Synlett 2003, 2147 -
17b
Das B.Venkateswarlu K.Suneel K.Majhi A. Tetrahedron Lett. 2007, 48: 5371 - 18
Cho CS.Oh SG. Tetrahedron Lett. 2006, 47: 5633 -
19a
Antoniotti S.Duñach E. Tetrahedron Lett. 2002, 43: 3971 -
19b
Nasar MK.Kumar RR.Perumal S. Tetrahedron Lett. 2007, 48: 2155 - 20
Cho CS.Ren WX.Shim SC. Tetrahedron Lett. 2007, 48: 4665 - 21
Krasavin M.Parchinsky V. Synlett 2008, 645 -
22a
Dömling A.Ugi I. Angew. Chem. Int. Ed. 2000, 39: 3168 -
22b
Dömling A. Chem. Rev. 2006, 106: 17 -
22c
Tietze LF. Chem. Rev. 1996, 96: 115 -
22d
Posner GH. Chem. Rev. 1986, 86: 831 -
22e
Ramón DJ.Yus M. Angew. Chem. Int. Ed. 2005, 44: 1602 - 23
Bienaymé H.Hulme C.Oddon G.Schmitt P. Chem. Eur. J. 2000, 6: 3321 -
24a
Van Leusen D.Van Leusen AM. Org. React. 2001, 57: 417 -
24b
Tandon VK.Rai S. Sulfur Reports 2003, 24: 307 -
25a
Denmark SE.Fan Y. J. Org. Chem. 2005, 70: 9667 -
25b
Krishna PR.Dayaker G.Reddy PVN. Tetrahedron Lett. 2006, 47: 5977 -
26a
Sisko J.Kassick AJ.Mellinger M.Filan JJ.Allen A.Olsen MA. J. Org. Chem. 2000, 65: 1516 -
26b
Ten-Have R.Huisman M.Meetsma A.Van Leusen AM. Tetrahedron 1997, 33: 11355 -
26c
Beck B.Leppert CA.Mueller BK.Dömling A. QSAR Com. Sci. 2006, 25: 527 - 27
Terzidis M.Tsoleridis CA.Stephanidou-Stephanatou J. Tetrahedron 2007, 63: 7828 - 30
Higashino T.Takemoto M.Tanji K.-I.Iijima C.Hayashi E. Chem. Pharm. Bull. 1985, 33: 4193
References and Notes
Evolution of gas with alkaline pH and characteristic amine odor was detected.
29All melting points were determined
on a Büchi apparatus and are uncorrected. The ¹H
NMR and ¹³C NMR spectra were recorded
on a Bruker AM 300 spectrometer in CDCl3 with TMS as
internal standard. All coupling constants are given in Hz and chemical
shifts are given in ppm.
Typical Experimental
Procedure for the Preparation of 3e: To a stirred solution
of o-phenylenediamine (1a;
1.0 mmol) in toluene (20 mL), 4-chlorobenzaldehyde (1.0 mmol) was
added and stirring was continued for 5 min. Then TosMIC (1.0 mmol)
and DABCO (1.2 mmol) were added and the reaction mixture was heated
to 80 ˚C for 4 h. The resulting solution was initially
washed with 5% HCl, then with H2O and dried.
The solvent was distilled off under reduced pressure to yield the
corresponding crude product mixture, which was purified by silica
gel chromatography using petroleum ether-EtOAc (10:1) as
eluent, to give quinoxaline 3e in 84% yield;
yellow crystals; mp 136-
137 ˚C (ethanol)
(lit.
[³0]
137 ˚C). ¹H
NMR: δ = 7.51 (dd, J = 8.8,
2.1 Hz, 2 H, 3′-H, 5′-H), 7.74 (dd, J = 8.8, 2.1 Hz, 1 H, 7-H),
[³¹]
7.77 (dd, J = 8.8, 2.1 Hz, 1 H, 6-H),
8.10 (dd, J = 8.8, 2.1 Hz, 1
H, 5-H), 8.11 (dd, J = 8.8,
2.1 Hz, 1 H, 8-H), 8.12 (dd, J = 8.8,
2.0 Hz, 2 H, 2′-H, 6′-H), 9.27 (s, 1 H, 3-H).
¹³C
NMR: δ = 128.7 (C-2′, C-6′),
129.1 (C-5), 129.4 (C-3′, C-5′), 129.5 (C-8),
129.8 (C-7), 130.4 (C-6), 135.1 (C-1′), 136.5 (C-4′),
141.6 (C-4a), 142.1 (C-8a), 150.5 (C-2). Anal. Calcd for C14H9ClN2 (240.69):
C, 69.85; H, 3.74; N, 11.64. Found: C, 70.01; H, 3.83; N, 11.68.
The multiplicities and chemical shifts
of the aromatic protons have been confirmed after simulation with
program SpinWorks, version 2.5, available from
ftp://davinci.chem.umanitoba.ca.