Synlett 2009(2): 302-305  
DOI: 10.1055/s-0028-1087518
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Heterocyclizations via TosMIC-Based Multicomponent Reactions: A New Approach to One-Pot Facile Synthesis of Substituted Quinoxaline Derivatives

Constantinos Neochoritis, Julia Stephanidou-Stephanatou*, Constantinos A. Tsoleridis*
Department of Chemistry, Laboratory of Organic Chemistry, University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
Fax: +30(2310)997679; e-Mail: ioulia@chem.auth.gr; e-Mail: tsolerid@chem.auth.gr;
Further Information

Publication History

Received 6 August 2008
Publication Date:
15 January 2009 (online)

Abstract

A novel multicomponent reaction involving o-phenylenediamines, aldehydes and p-toluenesulfonylmethyl isocyanide (TosMIC) in the presence of a base leading to the formation of quinoxalines in very good yields is described.

    References and Notes

  • 1a Cheeseman GW. Cookson RF. In The Chemistry of Heterocyclic Compounds   2nd ed.:  Weissberger A. Taylor EC. Wiley; New York: 1979.  p.1 
  • 1b Toshima K. Ozawa T. Kimura T. Matsumura S. Bioorg. Med. Chem. Lett.  2004,  14:  2777 
  • 1c Carta A. Paglietti G. Nikookar MER. Sanna P. Sechi L. Zanetti S. Eur. J. Med. Chem.  2002,  37:  355 
  • 2a Piras S. Loriga M. Paglietti G. Farmaco  2004,  59:  185 
  • 2b Carta A. Loriga M. Zanetti S. Sechi LA. Farmaco  2003,  58:  1251 
  • 3 Ali MM. Ismail MMF. El-Gaby MSA. Zahran MA. Ammar YA. Molecules  2000,  5:  864 
  • 4 Sarges R. Howard HR. Browne RG. Lebel LA. Seymour PA. Koe BK. J. Med. Chem.  1990,  33:  2240 
  • 5 Sakata G. Makino K. Kurasawa Y. Heterocycles  1998,  27:  2481 
  • 6 Gomtsyan A. Bayburt EK. Schmidt RG. Zeng GZ. Perner RJ. Didomenico S. Koenig JR. Turner S. Jinkerson T. Drizin I. Hannick SM. Macri BS. McDonald HA. Honore P. Wismer CT. Marsh KC. Wetter J. Stewart KD. Oie T. Jarvis MF. Surowy CS. Faltynek CR. Lee C.-H. J. Med. Chem.  2005,  48:  744 
  • 7 Seitz LE. Suling WJ. Reynolds RC. J. Med. Chem.  2002,  45:  5604 
  • 8 Jaso A. Zarranz B. Aldana I. Monge A. J. Med. Chem.  2005,  48:  2019 
  • 9 He W. Myers MR. Hanney B. Spada AP. Bilder G. Galzcinski H. Amin D. Needle S. Page K. Jayyosi Z. Perrone MH. Bioorg. Med. Chem. Lett.  2003,  13:  3097 
  • 10 Kim YB. Kim YH. Park JY. Kim SK. Bioorg. Med. Chem. Lett.  2004,  14:  541 
  • 11 Myers MR. He W. Hanney B. Setzer N. Maguire MP. Zulli A. Bilder G. Galzcinski H. Amin D. Needle S. Spada AP. Bioorg. Med. Chem. Lett.  2003,  13:  3091 
  • 12 Pearlman WM. Org. Synth.  1969,  49:  75 
  • 13a Katoh A. Yoshida T. Ohkanda J. In Heterocycles  2000,  52:  911 
  • 13b Thomas KRJ. Velusamy M. Lin JT. Chuen C.-H. Tao Y.-T. Chem. Mater.  2005,  17:  1860 
  • 13c Dailey S. Feast WJ. Peace RJ. Sage IC. Till S. Wood EL. J. Mater. Chem.  2001,  11:  2238 
  • 13d Sascha O. Rüdiger F. Synlett  2004,  1509 
  • 13e Sessler JL. Maeda H. Mizuno T. Lynch VM. Furuta H. J. Am. Chem. Soc.  2002,  124:  13474 
  • 13f Crossley MJ. Johnston LA. Chem. Commun.  2002,  1122 
  • 14a Brown DJ. Quinoxalines Supplements II, In The Chemistry of Heterocyclic Compounds   Taylor EC. Wipf P. John Wiley & Sons; New Jersey: 2004. 
  • 14b Bhosale RS. Sarda SR. Ardhapure SS. Jadhav WN. Bhusare SR. Pawar RP. Tetrahedron Lett.  2005,  46:  7183 
  • 14c More SV. Sastry MNV. Yao C.-F. Green Chem.  2006,  8:  91 
  • 14d Zhao Z. Wisnoski DD. Wolkenberg SE. Leister WH. Wang Y. Lindsley CW. Tetrahedron Lett.  2004,  45:  4873 
  • 15 Aparicio D. Attanasi OA. Filippone P. Ignacio R. Lillini S. Mantellini F. Palacios F. De los Santos JM. J. Org. Chem.  2006,  71:  5897 
  • 16a Raw SA. Wilfred CD. Taylor RJK. Org. Biomol. Chem.  2004,  2:  788 
  • 16b Kim SY. Park KH. Chung YK. Chem. Commun.  2005,  1321 
  • 16c Robinson RS. Taylor RJK. Synlett  2005,  1003 
  • 16d Cho CS. Oh SG. J. Mol. Catal. A: Chem.  2007,  276:  205 
  • 16e Shaabani A. Maleki A. Chem. Pharm. Bull.  2008,  56:  79 
  • 17a Singh SK. Gupta P. Duggineni S. Kundu B. Synlett  2003,  2147 
  • 17b Das B. Venkateswarlu K. Suneel K. Majhi A. Tetrahedron Lett.  2007,  48:  5371 
  • 18 Cho CS. Oh SG. Tetrahedron Lett.  2006,  47:  5633 
  • 19a Antoniotti S. Duñach E. Tetrahedron Lett.  2002,  43:  3971 
  • 19b Nasar MK. Kumar RR. Perumal S. Tetrahedron Lett.  2007,  48:  2155 
  • 20 Cho CS. Ren WX. Shim SC. Tetrahedron Lett.  2007,  48:  4665 
  • 21 Krasavin M. Parchinsky V. Synlett  2008,  645 
  • 22a Dömling A. Ugi I. Angew. Chem. Int. Ed.  2000,  39:  3168 
  • 22b Dömling A. Chem. Rev.  2006,  106:  17 
  • 22c Tietze LF. Chem. Rev.  1996,  96:  115 
  • 22d Posner GH. Chem. Rev.  1986,  86:  831 
  • 22e Ramón DJ. Yus M. Angew. Chem. Int. Ed.  2005,  44:  1602 
  • 23 Bienaymé H. Hulme C. Oddon G. Schmitt P. Chem. Eur. J.  2000,  6:  3321 
  • 24a Van Leusen D. Van Leusen AM. Org. React.  2001,  57:  417 
  • 24b Tandon VK. Rai S. Sulfur Reports  2003,  24:  307 
  • 25a Denmark SE. Fan Y. J. Org. Chem.  2005,  70:  9667 
  • 25b Krishna PR. Dayaker G. Reddy PVN. Tetrahedron Lett.  2006,  47:  5977 
  • 26a Sisko J. Kassick AJ. Mellinger M. Filan JJ. Allen A. Olsen MA. J. Org. Chem.  2000,  65:  1516 
  • 26b Ten-Have R. Huisman M. Meetsma A. Van Leusen AM. Tetrahedron  1997,  33:  11355 
  • 26c Beck B. Leppert CA. Mueller BK. Dömling A. QSAR Com. Sci.  2006,  25:  527 
  • 27 Terzidis M. Tsoleridis CA. Stephanidou-Stephanatou J. Tetrahedron  2007,  63:  7828 
  • 30 Higashino T. Takemoto M. Tanji K.-I. Iijima C. Hayashi E. Chem. Pharm. Bull.  1985,  33:  4193 
28

Evolution of gas with alkaline pH and characteristic amine odor was detected.

29

All melting points were determined on a Büchi apparatus and are uncorrected. The ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM 300 spectrometer in CDCl3 with TMS as internal standard. All coupling constants are given in Hz and chemical shifts are given in ppm.
Typical Experimental Procedure for the Preparation of 3e: To a stirred solution of o-phenylenediamine (1a; 1.0 mmol) in toluene (20 mL), 4-chlorobenzaldehyde (1.0 mmol) was added and stirring was continued for 5 min. Then TosMIC (1.0 mmol) and DABCO (1.2 mmol) were added and the reaction mixture was heated to 80 ˚C for 4 h. The resulting solution was initially washed with 5% HCl, then with H2O and dried. The solvent was distilled off under reduced pressure to yield the corresponding crude product mixture, which was purified by silica gel chromatography using petroleum ether-EtOAc (10:1) as eluent, to give quinoxaline 3e in 84% yield; yellow crystals; mp 136-
137 ˚C (ethanol) (lit. [³0] 137 ˚C). ¹H NMR: δ = 7.51 (dd, J = 8.8, 2.1 Hz, 2 H, 3′-H, 5′-H), 7.74 (dd, J = 8.8, 2.1 Hz, 1 H, 7-H), [³¹] 7.77 (dd, J = 8.8, 2.1 Hz, 1 H, 6-H), 8.10 (dd, J = 8.8, 2.1 Hz, 1 H, 5-H), 8.11 (dd, J = 8.8, 2.1 Hz, 1 H, 8-H), 8.12 (dd, J = 8.8, 2.0 Hz, 2 H, 2′-H, 6′-H), 9.27 (s, 1 H, 3-H). ¹³C NMR: δ = 128.7 (C-2′, C-6′), 129.1 (C-5), 129.4 (C-3′, C-5′), 129.5 (C-8), 129.8 (C-7), 130.4 (C-6), 135.1 (C-1′), 136.5 (C-4′), 141.6 (C-4a), 142.1 (C-8a), 150.5 (C-2). Anal. Calcd for C14H9ClN2 (240.69): C, 69.85; H, 3.74; N, 11.64. Found: C, 70.01; H, 3.83; N, 11.68.

31

The multiplicities and chemical shifts of the aromatic protons have been confirmed after simulation with program SpinWorks, version 2.5, available from
ftp://davinci.chem.umanitoba.ca.