Synlett 2009(2): 233-236  
DOI: 10.1055/s-0028-1087519
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Application of an Intramolecular Stetter Reaction to Access trans,syn,trans-Fused Pyrans

Christopher S. P. McErlean*a, Anthony C. Willisb
a School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
Fax: +61(2)93513329; e-Mail: C.McErlean@chem.usyd.edu.au;
b Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
Further Information

Publication History

Received 19 September 2008
Publication Date:
15 January 2009 (online)

Abstract

The use of a commercially available thiazolium salt facilitated an intramolecular Stetter reaction between an aliphatic aldehyde and an acrylate unit, which delivered a trans,syn-fused bicyclic pyranone in high yield as a single diastereomer. The pyranone was used to synthesize a trans,syn,trans-fused polycyclic ether array and was ring expanded to give the corresponding oxepanone.

    References and Notes

  • 1a Stetter H. Kuhlmann H. Angew. Chem., Int. Ed. Engl.  1974,  13:  539 
  • 1b Stetter H. Angew. Chem., Int. Ed. Engl.  1976,  15:  639 
  • 1c Stetter H. Org. React.  1991,  40:  407 
  • 2 Seebach D. Angew. Chem., Int. Ed. Engl.  1979,  18:  239 
  • 3 Breslow R. J. Am. Chem. Soc.  1958,  80:  3719 
  • 4 Ciganek E. Synthesis  1995,  1311 
  • 5 Trost BM. Shuey CD. DiNinno F. McElain SS.
    J. Am. Chem. Soc.  1979,  101:  1284 
  • 6a Enders D. Breuer K. Runsink J. Teles JH. Helv. Chim. Acta  1996,  79:  1899 
  • 6b Enders D. Balensiefer T. Acc. Chem. Res.  2004,  37:  534 
  • 7 Rovis T. Kerr MS. Synlett  2003,  1934 
  • 8a Read de Alaniz J. Kerr MS. Moore JL. Rovis T.
    J. Org. Chem.  2008,  73:  2033 
  • 8b Kerr MS. Read de Alaniz J. Rovis T. J. Am. Chem. Soc.  2002,  124:  10298 
  • 8c Kerr MS. Rovis T. J. Am. Chem. Soc.  2004,  126:  8876 
  • 8d Rovis T. Read de Alaniz J. J. Am. Chem. Soc.  2005,  127:  6284 
  • 8e Rovis T. Moore JL. Kerr MS. Tetrahedron  2006,  62:  11477 
  • 8f Kerr MS. Read de Alaniz J. Rovis T. J. Org. Chem.  2005,  70:  5725 
  • 9a Johnson JS. Angew. Chem. Int. Ed.  2004,  43:  1326 
  • 9b Johnson JS. Curr. Opin. Drug Discovery Dev.  2007,  10:  691 
  • 10a Mattson AE. Bharadwaj AR. Scheidt KA. J. Am. Chem. Soc.  2004,  126:  2314 
  • 10b Mattson AE. Bharawaj AR. Zuhl AM. Scheidt KA. J. Org. Chem.  2006,  71:  5715 
  • 11 Enders D. Niemeier O. Henseler A. Chem. Rev.  2007,  107:  5606 
  • 12a Nicolaou KC. Tang Y. Wang J. Chem. Commun.  2007,  1922 
  • 12b Nicolaou KC. Pappo D. Tsang KY. Gibe R. Chen DY.-K. Angew. Chem. Int. Ed.  2008,  47:  944 
  • For polycyclic ethers, see:
  • 13a Bowden B. Toxin Rev.  2006,  25:  137 
  • 13b Inoue M. Chem. Rev.  2005,  105:  4379 
  • 13c Lin Y.-Y. Risk M. Ray SM. Van Engen D. Clardy J. Golik J. James JC. Nakanishi K. J. Am. Chem. Soc.  1981,  103:  6773 
  • 13d Matsuo G. Kawamura K. Hori N. Matsukura H. Nakata T. J. Am. Chem. Soc.  2004,  126:  14374 
  • 13e Nakata T. Chem. Rev.  2005,  105:  4314 
  • 13f For iterative approaches to polycyclic ethers, see: Sasaki M. Top. Heterocycl. Chem.  2006,  5:  149 
  • 13g Canoa P. Pérez M. Covelo B. Gómeza G. Fall Y. Tetrahedron Lett.  2007,  48:  3441 
  • 13h Kimura T. Nakata T. Tetrahedron Lett.  2007,  48:  43 
  • 13i Kimber MC. Robertson J. McErlean CSP. Wilson C. Clark JS. Angew. Chem. Int. Ed.  2005,  44:  6157 
  • 13j Kadota I. Yamamoto Y. Acc. Chem. Res.  2005,  38:  423 ; and references therein
  • 13k Trost BM. Rhee YH. Org. Lett.  2004,  6:  4311 
  • 13l For approaches utilizing acrylate esters, see: Marmsater FP. West FG. Chem. Eur. J.  2002,  8:  4346 ; and references therein
  • 13m Evans PA. Roseman JD. Garber LT. J. Org. Chem.  1996,  61:  4880 
  • 13n Hori N. Matsukura H. Matsuo G. Nakata T. Tetrahedron Lett.  1999,  40:  2811 
  • 13o Hori N. Matsukura H. Matsuo G. Nakata T. Tetrahedron  2002,  58:  1853 
  • 14 Hegedus LS. McKearin JM. J. Am. Chem. Soc.  1982,  104:  2444 
  • 15a Winterfeldt E. Chem. Ber.  1964,  97:  1952 
  • 15b Hori N. Matsukura H. Matsuo G. Nakata T. Tetrahedron Lett.  1999,  40:  2811 
  • 16 Betancort JM. Martín VS. Padrón JM. Palazón JM. Ramírez MA. Soler MA. J. Org. Chem.  1997,  62:  4570 
  • 18 Mori Y. Yaegashi K. Furukawa H. J. Am. Chem. Soc.  1996,  118:  8158 
  • 19a

    For the synthesis of compound 13 see Supporting Information.

  • 19b

    CCDC 702838 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

  • 20a

    A crystalline p-bromobenzoate derivative of a similar fused bicyclic system has been reported. [²0b] Therefore, alcohol 12 was converted into the corresponding p-bromo-benzoate but that compound failed to provide crystals suitable for X-ray crystallographic analysis.

  • 20b Nicolaou KC. Prasad CVC. Somers PK. Hwang C.-K. J. Am. Chem. Soc.  1989,  111:  5330 
  • 21a Shioiri T. Hashimoto N. Aoyama T. Tetrahedron Lett.  1980,  21:  4619 
  • 21b Mori Y. Yaegashi K. Furukawa H.
    J. Am. Chem. Soc.  1997,  119:  4557 
  • 21c Mori Y. Nogami K. Hayashi H. Noyori R. J. Org. Chem.  2003,  68:  9050 
17

Synthesis of Compound 8
To a solution of aldehyde 7 (58 mg, 0.24 mmol) in THF (2 mL) was added thiazolium salt 11 (90 mg, 0.36 mmol) and DBU (54 µL, 0.36 mmol). The mixture was stirred under reflux for 16 h, poured onto H2O (30 mL), and extracted with EtOAc (4 × 10 mL). The combined organic phases were dried over Na2SO4, the solvent was evaporated, and the residue was subjected to flash chromatography, eluting with 10% EtOAc in hexanes, to give 8 (57 mg, 98%) as a clear oil. IR (CHCl3): νmax = 3093, 2977, 2931, 1735, 1720, 1450, 1396, 1288, 1172, 1103, 1026 cm. ¹H NMR (300 MHz, CDCl3): δ = 4.29 (1 H, dd, J = 6.0, 5.7 Hz), 4.14 (2 H, q, J = 7.2 Hz), 3.36 (1 H, ddd, J = 9.9, 9.9, 4.5 Hz), 2.87 (1 H, dd, J = 16.5, 5.4 Hz), 2.62 (1 H, dd, J = 16.5, 6.3 Hz), 2.55 (1 H, dd, J = 15.5, 4.5 Hz), 2.15 (1 H, dd, J = 15.5, 12.3 Hz), 2.05-1.99 (1 H, m), 1.85-1.62 (4 H, m), 1.37-1.06 (4 H, m), 1.25 (3 H, t, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl3): δ = 206.6 (C), 171.0 (C), 80.5 (CH), 79.7 (CH), 60.7 (CH2), 45.1 (CH2), 42.9 (CH), 35.3 (CH2), 32.0 (CH2), 31.7 (CH2), 24.9 (CH2), 24.6 (CH2), 14.2 (CH3). HRMS: m/z calcd for C13H21O4 [M + H+]: 241.14344; found: 241.14383.