RSS-Feed abonnieren
DOI: 10.1055/s-0028-1087556
Greener and Expeditious Synthesis of 1,4-Disubstituted 1,2,3-Triazoles from Terminal Acetylenes and in situ Generated α-Azido Ketones
Publikationsverlauf
Publikationsdatum:
06. Februar 2009 (online)
Abstract
A convenient and mild protocol for the one-pot regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles in aqueous PEG 400 has been reported. The methodology involves the one-pot reaction of α-bromo ketones, sodium azide, and terminal acetylenes catalyzed by Cu(I) in aqueous PEG 400 at room temperature. Prominent features of our approach are mild reaction conditions, use of readily available α-bromo compounds, aqueous PEG 400 as a benign reaction medium, avoiding the isolation of labile α-azido ketones, simple workup, and good yields.
Key words
1,2,3-triazoles - α-bromo ketones - click chemistry - α-azido ketones
-
1a
Kolb HC.Sharpless KB. Drug Discovery Today 2003, 8: 1128 -
1b
Kolb HC.Finn MG.Sharpless KB. Angew. Chem. Int. Ed. 2001, 40: 2004 -
1c
Gil MV.Arevalo MJ.Lopez O. Synthesis 2007, 1589 -
1d
Moses JE.Moorhouse AD. Chem. Soc. Rev. 2007, 36: 1249 -
1e
Bock VD.Hiemstra H.Maarseveen JHV. Eur. J. Org. Chem. 2006, 51 -
1f
Genin MJ.Allwine DA.Anderson DJ.Barbachyn MR.Emmert DE.Garmon SA.Graber DR.Grega KC.Hester JB.Hutchinson DK.Morris J.Reischer RJ.Ford CW.Zurenco GE.Hamel JC.Schaadt RD.Stapert D.Yagi BH. J. Med. Chem. 2000, 43: 953 -
1g
Pagliai F.Pirali T.Grosso ED.Brisco RD.Tron GC.Sorba G.Genazzani AA. J. Med. Chem. 2006, 49: 467 -
1h
Brik A.Muldoon J.Lin YC.Elder JH.Goodsell DS.Olson AJ.Fokin VV.Sharpless KB.Wong CH. ChemBioChem 2003, 4: 1246 -
1i
Brockunier LL.Parmee ER.Ok HO.Candelore MR.Cascieri MA.Colwell LF.Deng L.Feeney WP.Forrest MJ.Hom GJ.MacIntyre DE.Tota L.Wyvratt MJ.Fischer MH.Weber AE. Bioorg. Med. Chem. Lett. 2000, 10: 2111 -
1j
Velazquez S.Alvarez R.Perez C.Gago F.De Clercq E.Balzarini J.Camarasa MJ. Antiviral Chem. Chemother. 1998, 9: 481. -
2a
Fan WQ.Katritzky AR. In Comprehensive Heterocyclic Chemistry II Vol. 4:Katritzky AR.Rees CW.Scriven CWV. Oxford; Elsevier: 1996. p. 1-126 -
2b
Thibault RJ.Takizawa K.Lowenheilm P.Helms B.Mynar JL.Frechet JMJ.Hawker CJ.
J. Am. Chem. Soc. 2006, 128: 12084 -
2c
Abu-Orabi ST.Alfah MA.Jibril I.Marii FM.Ali AAS. J. Heterocycl. Chem. 1989, 26: 1461 -
2d
Scriven EFV.Turnbull K. Chem. Rev. 1988, 88: 297 -
2e
Maksikova AV.Serebryakova ES.Tikhonova LG.Vereshagin LI. Chem. Heterocycl. Compd. 1980, 1284 -
2f
Kacprzak K. Synlett 2005, 943 -
2g
Lubineau A.Auge J.Queneau Y. Synthesis 1994, 741 -
2h
Li CJ.Chan TH. Organic Reactions in Aqueous Media New York; Wiley: 1997. -
2i
Lindstrom UM. Chem. Rev. 2002, 102: 2751 -
3a
Horne WS.Yadav MK.Stout CD.Ghadiri MR. J. Am. Chem. Soc. 2004, 126: 15366 -
3b
Dalvie DK.Kalgutkar AS.Khojasteh-Bakht SC.Obach RS.O’Donnell JP. Chem. Res. Toxicol. 2002, 15: 269 -
3c
Speers AE.Cravatt BF. Chem. Biol. 2004, 11: 535 -
3d
Lee LV.Mitchell ML.Huang S.-J.Fokin VV.Sharpless KB.Wong C.-H. J. Am. Chem. Soc. 2003, 125: 9588 -
4a
Polshettiwar V.Varma RS. Chem. Soc. Rev. 2008, 1546 -
4b
Polshettiwar V.Varma RS. Acc. Chem. Res. 2008, 41: 629 -
4c
Adams DJ.Dyson PJ.Tavener SJ. Chemistry in Alternative Reaction Media Wiley; Chichester: 2004. -
4d
Matlack AS. Introduction to Green Chemistry Marcel Dekker Inc.; New York: 2001. - 5
Anastas PT.Warner JC. Green Chemistry: Theory and Practice Oxford University Press; Oxford: 1998. - 6
Zhu J.Bienayme H. Multicomponent Reactions 1st ed.: Wiley-VCH; Weinheim: 2005. -
7a
Huisgen R. In 1,3-Dipolar Cycloaddition ChemistryPadwa A. Wiley; New York: 1984. p.1-176 -
7b
Padwa A. In Comprehensive Organic Synthesis Vol. 4:Trost BM. Pergamon; Oxford: 1991. p.1069-1109 -
7c
Smith CD.Baxendale IR.Lanners S.Hayward JJ.Smith SC.Ley SV. Org. Biomol. Chem. 2007, 5: 1559 - 8
Tanemura K.Suzuki T.Nishida Y.Satsumabayashi K.Horaguchi T. Chem. Commun. 2004, 470 -
9a
Marsh FD. J. Org. Chem. 1972, 37: 2966 -
9b
Priebe H.Braathen GO.Klaeboe P.Neelsen C.Priebe H. Acta Chem. Scand. Ser. B 1984, 38: 895 -
9c
Smith PAS. Derivatives of Hydrazine and Other Hydronitrogens Having N-N Bonds Benjamin-Cummings; Reading (MA): 1983. p.263 -
11a
Chen J.Spear SK.Huddleston JG.Rogers RD. Green Chem. 2005, 7: 64 -
11b
Zaslavsky BY. Aqueous Two-Phase Partitioning: Physical Chemistry and Bioanalytical Applications Marcel Dekker; New York: 1995. -
11c
Yalkowsky SH.Banerjee S. Aqueous Solubility: Methods of Estimation for Organic Compounds Marcel Dekker; New York: 1992.
References and Notes
General Procedure
To
a solution of α-halo compound 1 (1.0
mmol), NaN3 (1.2 mmol), and terminal acetylene (1.0 mmol)
in aq PEG 400 (2 mL) was added sodium ascorbate (19.8 mg, 10 mol%)
and 1 M CuSO4 (50 µL, 5 mol%) solution.
The reaction mixture was allowed to stir at r.t. for 30 min. After
the reaction was complete, as indicated by TLC, the solid product
was filtered, washed, and dried to afford pure product.
Analytical Data for Selected Compounds
Compound 2a:7c IR (KBr): 1690 (CO) cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 8.04-8.00
(2 H, m), 7.95 (1 H, s), 7.89-7.84 (2 H, m), 7.73-7.65
(1 H, m), 7.59-7.31 (5 H, m), 5.91 (2 H, s). ¹³C
NMR (50 MHz, CDCl3): δ = 195.0
(CO), 152.4, 139.0, 138.2, 134.5, 133.5, 133.2, 132.7, 132.5, 130.1, 126.4,
59.9. MS (EI): m/z calcd for
C16H14N3O [M + H]+: 264.1;
found: 264.3.
Compound 2h: IR
(KBr): 1680 (CO) cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 8.53
(1 H, s), 8.11 (2 H, d, J = 8.0
Hz), 7.88 (2 H, d, J = 8.0
Hz), 7.70 (2 H, d, J = 8.0
Hz), 7.48-7.45 (2 H, m), 7.37-7.35 (1 H, m), 6.27
(2 H, s). ¹³C NMR (100 MHz, DMSO-d
6): δ = 191.4
(CO), 146.3, 139.2, 132.8, 130.7, 130.1, 129.1, 128.9, 127.9, 125.1,
123.0, 56.0. MS (EI): m/z calcd
for C16H13ClN3O [M + H]+:298.0747;
found: 297.9593.
Compound 2l: IR (KBr): 1720 (CO) cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 8.56
(1 H, s), 7.85 (2 H, d, J = 8.0 Hz),
7.47-7.44 (2 H, m), 7.35-7.32 (1 H, m), 5.76-5.71
(1
H, m), 2.75-2.67 (1 H, m), 2.45-2.32 (3 H, m),
2.11-2.09 (1 H, m), 1.96-1.92 (2 H, m), 1.76-1.68
(1 H, m). ¹³C NMR (100 MHz, DMSO-d
6): δ = 204.1
(CO), 145.9, 130.8, 128.9, 127.8, 125.0, 121.3, 66.8, 40.4, 33.4,
26.4, 23.6. MS (EI):
m/z calcd
for C14H16N3O [M + H]+:
242.1293; found: 242.0473.
Compound 2o: IR (KBr): 1685 (CO) cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 9.17
(1 H, s), 8.61 (1 H, s), 8.20 (2 H, d, J = 8.0
Hz), 8.15 (1 H, d, J = 8.0
Hz), 8.02 (1 H, d, J = 8.0 Hz),
7.90 (2 H, d, J = 8.0
Hz), 7.80-7.76 (1 H, m), 7.69-7.65 (2 H, m), 7.49-7.33
(5 H, m), 6.26 (2 H, s). ¹³C NMR (100 MHz,
DMSO-d
6): δ = 187.9
(CO), 146.3, 136.3, 135.4, 134.8, 133.9, 130.7, 130.2, 128.9, 127.9,
127.3, 126.8, 126.2, 125.2, 125.1, 123.2, 122.0, 117.5, 113.1, 56.0.
MS (EI): m/z calcd for C24H19N4O3S [M + H]+:
443.1178; found: 443.0073.
Compound 2p:
IR (KBr): 1759 (CO) cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.92-7.82
(3 H, m), 7.42-7.27 (3 H, m), 5.21 (2 H, s), 3.80 (3 H,
s). ¹³C NMR (75 MHz, CDCl3): δ = 166.8
(CO), 148.2, 130.4, 128.9, 128.3, 125.8, 121.1, 53.0, 50.8. MS (EI): m/z calcd for C11H12N3O2 [M + H]+:
218.1; found: 218.3.
Compound 2q:
IR (KBr): 1651 (CO) cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 8.03 (1 H,
s), 7.85-7.83 (2 H, m), 7.44-7.39 (2 H, m), 7.39-7.30
(1 H, m), 5.23 (2 H, s), 3.46-3.39 (4 H, m), 1.25 (3 H,
t, J = 7.15
Hz), 1.15 (3 H, t, J = 7.10 Hz). ¹³C
NMR (75 MHz, CDCl3): δ = 164.0 (CO),
148.0, 130.7, 128.8, 128.1, 125.8, 121.4, 50.9, 42.0, 41.0, 14.4, 12.8.
MS (EI): m/z calcd for C14H19N4O [M + H]+:
259.2; found: 259.3.
Compound 2r:
IR (KBr): 2286 (CN) cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 8.00 (1 H,
s), 7.86-7.81 (2 H, m), 7.51-7.38 (3 H, m), 5.40
(2 H, s). ¹³C NMR (50 MHz, CDCl3):
δ = 149.6,
129.9, 129.4, 129.3, 126.3, 120.3, 113.1, 38.0. MS (EI): m/z calcd for C10H9N4 [M + H]+:
185.1; found: 185.2.
Compound 2s:
IR (KBr): 1693 (CO) cm-¹. ¹H
NMR (300 MHz, DMSO-d
6): δ = 7.86
(2 H, d, J = 8.49
Hz), 7.68 (2 H, d, J = 8.49
Hz), 7.51 (1 H, s), 5.79 (2 H, s), 3.65-3.58 (2 H, m),
2.96-2.91 (2 H, m), 2.24-2.15 (2 H, m). ¹³C
NMR (75 MHz, CDCl3): δ = 189.7 (CO),
146.8, 132.7, 132.6, 130.0, 129.6, 123.0, 55.3, 44.2, 31.8, 22.7.
MS (EI): m/z calcd for C13H14BrClN3O [M + H]+:
342.0; found: 342.0.