Synlett 2009(4): 667-670  
DOI: 10.1055/s-0028-1087811
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Guanidine-Urea Bifunctional Organocatalyst for Asymmetric Epoxidation of 1,3-Diarylenones with Hydrogen Peroxide

Shinji Tanaka, Kazuo Nagasawa*
Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
Fax: +81(42)3887295; e-Mail: knaga@cc.tuat.ac.jp;
Weitere Informationen

Publikationsverlauf

Received 22 September 2008
Publikationsdatum:
16. Februar 2009 (online)

Abstract

A highly enantioselective catalytic epoxidation reaction to the electron-deficient α,β-unsaturated olefin moieties of diaryl­enones was achieved with high chemical yield by using aqueous hydrogen peroxide in the presence of a newly developed guanidine-urea bifunctional organocatalyst. These functional groups were suggested to perform cooperatively by interacting with guanidine-­hydrogen peroxide and urea-enones, respectively.

    References and Notes

  • 1a Noyori R. Asymmetric Catalysis in Organic Synthesis   John Wiley and Sons; New York: 1994. 
  • 1b Comprehensive Asymmetric Catalysis   Jacobsen EN. Pfaltz A. Yamamoto H. Springer; New York: 1999. 
  • 1c Catalytic Asymmetric Synthesis   2nd ed.:  Ojima I. Wiley; New York: 2000. 
  • 1d Lauret C. Tetrahedron: Asymmetry  2001,  12:  2359 
  • For reviews, see:
  • 2a Porter MJ. Skidmore J. Chem. Commun.  2000,  1215 
  • 2b Nemoto T. Ohoshima T. Shibasaki M. J. Synth. Org. Chem. Jpn.  2002,  60:  94 
  • 2c Lauret C. Roberts SM. Aldrichimica Acta  2002,  35:  47 
  • 3a Noyori R. Aoki M. Sato K. Chem. Commun.  2003,  1977 
  • 3b Campos-Martin JM. Blanco-Brieva G. Fierro JLG. Angew. Chem. Int. Ed.  2006,  45:  6962 ; and references cited therein
  • 4a Juliá S. Masana J. Vega JC. Angew. Chem., Int. Ed. Engl.  1980,  19:  929 
  • 4b Juliá S. Guixer J. Masana J. Rocas J. Colonna S. Annuziata R. Molinari H. J. Chem. Soc., Perkin Trans. 1  1982,  1317 
  • 5a Arai S. Tsuge H. Shioiri T. Tetrahedron Lett.  1998,  39:  7563 
  • 5b Arai S. Tsuge H. Oku M. Miura M. Shioiri T. Tetrahedron  2002,  58:  1623 
  • 5c Dehmlow EV. Düttmann S. Neumann B. Stammler H.-G. Eur. J. Org. Chem.  2002,  2087 
  • 5d Berkessel A. Gasch N. Glaubiz K. Koch C. Org. Lett.  2001,  3:  3839 
  • 5e Kelly DR. Roberts SM. Biopolymers  2006,  84:  74 
  • 5f Berkessel A. Koch B. Toniolo C. Rainaldi M. Broxterman QB. Kaptein B. Biopolymers  2006,  84:  90 
  • 5g Geller T. Gerlach A. Krüger CM. Militzer H.-C. Tetrahedron Lett.  2004,  45:  5065 
  • 5h Geller T. Krüger CM. Militzer H.-C. Tetrahedron Lett.  2004,  45:  5069 
  • 5i Yi H. Zou G. Li Q. Chen Q. Tang J. He M.-y. Tetrahedron Lett.  2005,  46:  5665 
  • 5j Hori K. Tamura M. Tani K. Nishiwaki N. Ariga M. Tohda Y. Tetrahedron Lett.  2006,  47:  3115 
  • 5k Sundén H. Ibrahem I. Córdova A. Tetrahedron Lett.  2006,  47:  99 
  • 5l Zhao G.-L. Ibrahem I. Sundén H. Córdova A. Adv. Synth. Catal.  2006,  349:  1210 
  • 6 Marigo M. Franzén J. Poulsen TB. Zhuang W. Jørgensen KA. J. Am. Chem. Soc.  2005,  127:  6964 
  • 7 Jew S.-s. Lee JH. Jeong B.-S. Yoo M.-S. Kim M.-J. Lee J. Choi S.-h. Lee K. Lah MS. Park H.-g. Angew. Chem. Int. Ed.  2005,  44:  1383 
  • 8 Wang X. Reisinger CM. List B. J. Am. Chem. Soc.  2008,  130:  6070 
  • 9a Ishikawa T. Isobe T. Chem. Eur. J.  2002,  8:  552 
  • 9b McManus JC. Carey JS. Taylor RJK. Synlett  2003,  365 
  • 9c McManus JC. Genski T. Carey JS. Taylor RJK. Synlett  2003,  369: 
  • 9d Allingham MT. Howard-Jones A. Murphy PJ. Thomas DA. Caulkett PWR. Tetrahedron Lett.  2003,  44:  8677 
  • 9e Kumamoto T. Ebine K. Endo M. Araki Y. Fushimi Y. Miyamoto I. Ishikawa T. Isobe T. Fukuda K. Heterocycles  2005,  66:  347 
  • 9f Ishikawa T. Kumamoto T. Synthesis  2006,  737 
  • 9g Kita T. Shin B. Hashimoto Y. Nagasawa K. Heterocycles  2007,  73:  241 
  • 9h Shin B. Tanaka S. Kita T. Hashimoto Y. Nagasawa K. Heterocycles  2008,  76:  801 
  • 9i Terada M. Nakano M. Heterocycles  2008,  1049 
  • 10a Sohtome Y. Hashimoto Y. Nagasawa K. Adv. Synth. Catal.  2005,  347:  1643 
  • 10b Sohtome Y. Takemura N. Iguchi T. Hashimoto Y. Nagasawa K. Synlett  2006,  144 
  • 10c Sohtome Y. Hashimoto Y. Nagasawa K. Eur. J. Org. Chem.  2006,  2894 
  • 10d Sohtome Y. Takemura N. Takada K. Takagi R. Iguchi T. Nagasawa K. Chem. Asian J.  2007,  2:  1150 
  • 10e Takada K. Takemura N. Cho K. Sohtome Y. Nagasawa K. Tetrahedron Lett.  2008,  49:  1623 
  • 11a Sohtome Y. Tanatani A. Hashimoto Y. Nagasawa K. Chem. Pharm. Bull.  2004,  52:  477 
  • 11b Sohtome Y. Tanatani A. Hashimoto Y. Nagasawa K. Tetrahedron Lett.  2004,  45:  5589 
  • 11c Maher DJ. Connon SJ. Tetrahedron Lett.  2004,  45:  1301 
  • 12 Howard-Jones A. Murphy PJ. Thomas DA. J. Org. Chem.  1999,  64:  1039 
  • 13a Lu C.-S. Hughes EW. Giguère PA. J. Am. Chem. Soc.  1941,  63:  1507 
  • 13b Aida K. J. Inorg. Nucl. Chem.  1963,  25:  165 
  • 13c Cooper M. Heaney H. Newbold AJ. Sanderson WR. Synlett  1990,  533 
  • 13d Heaney H. Aldrichimica Acta  1993,  26:  35 
  • 15a Schreiner PR. Wittkopp A. Org. Lett.  2002,  4:  217 
  • 15b Wittkopp A. Schreiner PR. Chem. Eur. J.  2003,  9:  407 
  • 17a Lattanzi A. Org. Lett.  2005,  7:  2579 
  • 17b Li Y. Liu X. Yang Y. Zhao G. J. Org. Chem.  2007,  72:  288 
  • 17c Ye J. Wang Y. Chen J. Liang X. Adv. Synth. Catal.  2004,  346:  691 
  • 17d Kumaraswamy G. Sastry MNV. Jena N. Kumarb KR. Vairamanic M. Tetrahedron: Asymmetry  2003,  14:  3797 
  • 17e Ooi T. Ohara D. Tamura M. Maruoka K. J. Am. Chem. Soc.  2004,  126:  6844 
  • 21 Sohtome Y. Takemura N. Takagi R. Hashimoto Y. Nagasawa K. Tetrahedron  2008,  64:  9423 ; and references cited therein
14

Synthesis of Catalyst 1a and Spectral Data for 1a-e
To a solution of guanidine (S,S)-1f ¹0a (258 mg, 0.317 mmol) in CH2Cl2 (3.0 mL) was added TFA (3.0 mL) at 0 ˚C. The reaction mixture was warmed to r.t. and stirred for 2 h. The resulting mixture was concentrated in vacuo to give diamine. To a solution of the diamine in THF (6.0 mL) was added phenyl isocyanate (0.21 mL, 1.90 mmol), and the mixture was stirred for 12 h. The resulting mixture was concentrated in vacuo, and the residue was purified by flash column chromatography on silica gel (n-hexane-EtOAc = 4:1 to 1:1, CHCl3-MeOH = 9:1) to give 1a as a TFA salt (Scheme  [¹] ). The counteranion of 1a was exchanged into Cl- by treatment with sat. aq NH4Cl and EtOAc solution, and gave 1a as a HCl form in 81% yield from 1f (219 mg, 0.257 mmol).
Compound 1a: [α]D ²4 -41.2 (c 1.3, CHCl3). ¹H NMR (400 MHz, CD3OD): δ = 7.33-7.10 (m, 18 H), 6.93 (t, J = 7.4 Hz, 2 H), 4.11 (br s, 2 H), 3.45-3.32 (m, 4 H), 3.16 (t, J = 7.3 Hz, 2 H), 3.03 (dd, J = 4.5, 14.1 Hz, 2 H), 2.79 (dd, J = 9.6, 13.7 Hz, 2 H), 1.59 (m, 2 H), 1.34-1.14 (m, 30 H), 0.88 (t, J = 7.3 Hz, 3 H). ¹³C NMR (100 MHz, CD3OD): δ = 158.51, 156.33, 140.52, 138.97, 130.22, 129.83, 129.68, 127.78, 123.67, 120.18, 52.46 (br), 47.63 (br), 43.12, 39.32, 33.09, 30.78 (br), 30.69, 30.66, 30.49, 30.39, 29.75, 27.99, 23.75, 14.48. ESI-HRMS: m/z calcd for C51H74N7O2 [M + H+]: 816.5904; found: 816.5895.
Compound 1b: [α]D ²5 -11.3 (c 1.1, CHCl3). ¹H NMR (400 MHz, CD3OD): δ = 7.94 (s, 4 H), 7.44 (s, 2 H), 7.31-7.14 (m, 10 H), 4.14 (br s, 2 H), 3.41 (d, J = 5.0 Hz, 4 H), 3.18 (t, J = 7.3 Hz, 2 H), 3.07 (dd, J = 4.0, 13.9 Hz, 2 H), 2.80 (dd, J = 9.5, 13.9 Hz, 2 H), 1.61 (m, 2 H), 1.34-1.08 (m, 30 H), 0.88 (t, J = 6.9 Hz, 3 H). ¹³C NMR (100 MHz, CD3OD): δ = 157.82, 156.31, 142.99, 138.79, 133.13 (q, J CF = 32.6 Hz), 130.14, 129.66, 127.81, 124.76 (d, J CF = 271.3 Hz), 120.70, 118.98, 115.79, 52.66 (br) 47.46, 43.10, 39.20, 33.08, 30.75 (br), 30.61, 30.54, 30.47, 30.16, 29.64, 27.92, 23.74, 14.46. ESI-HRMS: m/z calcd for C55H70F12N7O2 [M + H+]: 1088.5399; found: 1088.5370.
Compound 1c: [α]D ²6 -24.5 (c 1.4, CHCl3). ¹H NMR (400 MHz, CD3OD): δ = 7.32-7.17 (m, 10 H), 6.97 (d, J = 9.6 Hz, 4 H), 6.46 (t, J = 9.2 Hz, 2 H), 4.10 (br s, 2 H), 3.39 (d, J = 5.5 Hz, 4 H), 3.18 (t, J = 7.3 Hz, 2 H), 3.07 (dd, J = 4.6, 13.8 Hz, 2 H), 2.79 (dd, J = 9.6, 14.2 Hz, 2 H), 1.63 (m, 2 H), 1.35-1.07 (m, 30 H), 0.88 (t, J = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CD3OD): δ = 164.61 (dd, J CF = 15.3, 243.4 Hz), 157.77, 156.22, 143.55 (t, J CF = 13.5 Hz), 138.81, 130.18, 129.64, 127.77, 102.09 (dd, J CF = 8.6, 21.1 Hz), 52.54 (br), 47.49 (br), 43.16, 39.22, 33.07, 30.78 (br), 30.71, 30.65, 30.48, 30.38, 29.76, 28.03, 23.74, 14.50. ESI-HRMS: m/z calcd for C51H70F4N7O2 [M + H+]: 888.5527; found: 888.5572.
Compound 1d: [α]D ²5 -40.4 (c 1.1, CHCl3). ¹H NMR (400 MHz, CD3OD): δ = 8.04 (s, 4 H), 7.47 (s, 2 H), 3.78 (br s, 2 H), 3.42 (dd, J = 13.8, 5.1 Hz, 2 H), 3.25 (m, 2 H), 3.17 (t, J = 7.4 Hz, 2 H), 1.94 (br, 2 H), 1.58 (m, 2 H), 1.33-1.08 (m, 30 H), 1.03 (d, J = 6.4 Hz, 6 H), 1.01 (d, J = 6.4 Hz, 6 H), 0.88 (t, J = 6.9 Hz, 3 H). ¹³C NMR (100 MHz, CD3OD): δ = 158.30, 156.31, 143.15, 133.20 (q, J CF = 32.6 Hz), 128.84, 124.78 (d, J CF = 272.2 Hz), 120.73, 118.84, 115.68, 55.92 (br), 46.04, 43.03, 33.08, 31.04 (br), 30.75 (br), 30.70, 30.62, 30.52, 30.48, 30.19, 29.80, 27.87, 23.74, 20.19, 17.62 14.46. ESI-HRMS: m/z calcd for C47H70F12N7O2 [M + H+]: 992.5399; found: 992.5373.
Compound 1e: [α]D ²6 -8.9 (c 1.1, CHCl3). ¹H NMR (400 MHz, CD3OD): δ = 8.04 (s, 4 H), 7.46 (s, 2 H), 3.91 (br s, 2 H), 3.41-3.14 (m, 6 H), 1.64 (m, 2 H), 1.29 (d, J = 6.9 Hz, 6 H), 1.27-1.10 (m, 30 H), 0.87 (t, J = 6.9 Hz, 3 H). ¹³C NMR (100 MHz, CD3OD): δ = 157.80, 156.25, 143.11, 133.15 (q, J CF = 32.6 Hz), 128.84, 124.79 (d, J CF = 272.2 Hz), 120.73, 119.00, 115.72, 47.05 (br), 43.13, 33.08, 30.75 (br), 30.70, 30.61, 30.52, 30.48, 30.14, 29.63, 27.90, 23.74, 18.34, 14.46. ESI-HRMS: m/z calcd for C43H62F12N7O2 [M + H+]: 936.4773; found: 936.4734.

Scheme 1

16

We recycled the catalyst 1b five times under the conditions of entry 11 in Table  [¹] . In these reactions, the yields and enantioselectivities were as follows: 2nd run: 95% with 90% ee; 3rd run: 99% with 90% ee; 4th run: 99% with 91% ee; and 5th run: 99% with 89% ee.

18

Typical Procedure for Asymmetric Epoxidation of 4a
A mixture of enone 4a (20.8 mg, 0.10 mmol) and guanidine-urea organocatalyst (S,S)-1b (5.6 mg, 0.005 mmol, 5 mol%) in toluene (0.95 mL) was cooled at -10 ˚C. To the mixture was added 1 M aq NaOH (0.050 mL, 0.050 mmol) and 30% aq H2O2 (0.051 mL, 0.50 mmol of H2O2). The mixture was stirred vigorously at -10 ˚C under argon atmosphere for 6 h. To the reaction mixture was added sat. aq NH4Cl, and the organic layer was extracted with EtOAc. The combined organic extracts were dried over MgSO4, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (n-hexane-EtOAc = 100:1 to 10:1) to give epoxy ketone 5a (22.3 mg, 99%) and catalyst 1b was quantitatively recovered (5.6 mg, >99%). The ee and absolute configuration of the epoxy ketone 5a was determined by HPLC using a chiral column.
Spectral Data and HPLC Data for Epoxy Ketone 5a
[α]D ²4 -210.1 (c 0.83, CHCl3). ¹H NMR (400 MHz, CDCl3): δ = 8.02 (d, J = 6.9 Hz, 2 H), 7.63 (t, J = 7.8 Hz, 1 H), 7.49 (t, J = 7.8 Hz, 2 H), 7.45-7.35 (m, 5 H), 4.31 (d, J = 1.8 Hz, 1 H), 4.08 (d, J = 1.8 Hz, 1 H). HPLC separation conditions: Chiralcel OD-H, 0.46 cm (ϕ) × 25 cm (L), hexane-2-PrOH = 98:2, 1.00 mL/min, t R(minor) = 19.5 min (2S,3R); t R(major) = 20.4 min (2R,3S).¹7a

19

In the case of aliphatic substituted enones, enantioselec-tivities were moderate to low (ex. R¹ = Me, R² = Ph, 99% yield with 41% ee).

20

NMR studies were performed in C6D6.