Abstract
This account is a tribute to Professor David Gibson in recognition
of his discovery of enzymatic dihydroxylation of aromatic compounds
four decades ago. Here are highlighted some of the milestones in
microbiology, biochemistry, molecular biology, and synthetic organic
chemistry connected with this unique reaction. Gibson’s
discovery greatly contributed to advancing biocatalysis as a discipline
with major impact on synthesis of optically pure compounds. Personal
recollections of several chemists who have embraced this technology
in their own work, along with the authors’ recollections
of the early days of research involving the cis -dihydrodiols,
are provided as Notes at the end of the article.
1 Introduction: History of Biocatalysis
2 The Discovery of Enzymatic Dihydroxylation
3 Processing of Arenes by Oxidoreductase Enzymes
4 Considerations of the Mechanism
5 Diversity of Metabolites
6 cis -Dihydrodiols as Synthetic
Intermediates: Analysis of Reactivity and Symmetry Options
7 Historically Important Milestones in Applications to Synthesis
8 Outlook
9 Notes
Key words
biocatalysis - enzymatic dihydroxylation of aromatics - arene cis -dihydrodiols - enantioselective
synthesis - enantiopure metabolites
References
<A NAME="RA52108ST-1">1 </A>
Pasteur L.
C.
R. Acad. Sci.
1857,
45:
913
<A NAME="RA52108ST-2">2 </A>
Dumas JBA.
Ann. Chim. Phys.
1874,
(Ser.
5) 3:
57
<A NAME="RA52108ST-3">3 </A>
Brown AJ.
J.
Chem. Soc.
1886,
49:
172
<A NAME="RA52108ST-4">4 </A>
Sertürner F.
Journal
der Pharmacie für Aerzte und Apotheker
1805,
13:
229
<A NAME="RA52108ST-5">5 </A>
Wöhler F.
Annalen
der Physik und Chemie
1828,
88:
253
<A NAME="RA52108ST-6">6 </A>
Fischer E.
Ber.
Dtsch. Chem. Ges.
1894,
27:
2985
<A NAME="RA52108ST-7">7 </A>
Fischer E.
Thierfelder H.
Ber. Dtsch. Chem. Ges.
1894,
27:
2031
For a historical overview of yeast-based
research see:
<A NAME="RA52108ST-8A">8a </A>
Barnett JA.
Microbiology
2003,
149:
557
<A NAME="RA52108ST-8B">8b </A>
Barnett JA.
Lichtenthaler FW.
Yeast
2001,
18:
363
<A NAME="RA52108ST-9">9 </A>
Lintner CJ.
von Liebig HJ.
Z. Physiol. Chem.
1911,
72:
449
<A NAME="RA52108ST-10A">10a </A>
Neuberg C.
Adv. Carbohydr. Chem.
1949,
4:
75
<A NAME="RA52108ST-10B">10b </A>
Brooks DW.
Grothaus PG.
Irwin WL.
J. Org. Chem.
1982,
47:
2820
<A NAME="RA52108ST-10C">10c </A>
Ward OP.
Young CS.
Enzyme
Microb. Technol.
1990,
12:
482
<A NAME="RA52108ST-10D">10d </A>
Servi S.
Synthesis
1990,
1
<A NAME="RA52108ST-11">11 </A>
Payen A.
Persoz JF.
Ann. Chim. Phys.
1833,
(Ser.
2) 53:
73
<A NAME="RA52108ST-12">12 </A>
Dakin HD.
J. Physiol.
1903,
30:
253
<A NAME="RA52108ST-12">12 </A>
Dakin HD.
J.
Physiol.
1905,
32:
199
Reviews:
<A NAME="RA52108ST-13A">13a </A>
Sih CJ.
Wu S.-H. In Topics in Stereochemistry
Vol.
19:
Eliel EL.
Wilen SH.
Wiley;
New
York:
1989.
p.63-125
<A NAME="RA52108ST-13B">13b </A>
Ohno M.
Otsuka M.
Organic
Reactions
Vol. 37:
John Wiley and Sons,
Inc.;
New York:
1989.
p.1
<A NAME="RA52108ST-13C">13c </A>
Johnson CR.
Acc. Chem. Res.
1998,
31:
333
<A NAME="RA52108ST-13D">13d </A>
Schoffers E.
Golebiowski A.
Johnson CR.
Tetrahedron
1996,
52:
3769
<A NAME="RA52108ST-13E">13e </A>
Garcia-Urdiales E.
Alfonso I.
Gotor V.
Chem. Rev.
2005,
105:
313
<A NAME="RA52108ST-13F">13f </A>
Hanefeld U.
Org.
Biomol. Chem.
2003,
1:
2405
<A NAME="RA52108ST-14A">14a </A> For
a survey of fermentation-based manufacture of pharmaceuticals see:
Bommarius AS.
Riebel BR.
Biocatalysis
Wiley-VCH;
Weinheim:
2004.
Chap.
13.
<A NAME="RA52108ST-14B">14b </A> for a historical account
of industrial biotransformations see:
Vasic-Racki D. In Industrial Biotransformations
Liese A.
Seelbach K.
Wandrey C.
Wiley-VCH;
Weinheim:
2006.
Chap.
1.
p.1-36 ; for a review on biotransformations-based
manufactring of pharmaceutical intermediates, see: Patel, R. N. Adv. Appl. Microbiol. 1997 , 43 , 91
<A NAME="RA52108ST-15A">15a </A>
Minas W. In Microbial
Processes and Products
Barredo JL.
Humana;
Totawa (NJ):
2005.
p.65-90
<A NAME="RA52108ST-15B">15b </A>
Liu J.-H, and
Celebuski JE. inventors; US Patent 5756473.
; Chem. Abstr. 1998 , 131 , 112379
<A NAME="RA52108ST-15C">15c </A>
Stassi DL,
Maine GT,
Post DA, and
Satter MT. inventors; US
Patent 5786181.
; Chem. Abstr. 1998 , 129 , 157703
<A NAME="RA52108ST-16">16 </A>
Gerson DF, and
Xiao X. inventors; US Patent 5409820.
; Chem. Abstr. 1995 , 123, 31395
<A NAME="RA52108ST-17">17 </A>
Stewart JD.
Curr.
Org. Chem.
1998,
2:
195
<A NAME="RA52108ST-18">18 </A>
Turner MK.
Trends
Biotechnol.
1995,
13:
173
<A NAME="RA52108ST-19">19 </A> The term ‘enantioselective
synthesis’ is much more appropriate than ‘asymmetric
synthesis’. The latter term has been used so extensively,
even by the present authors, that its eradication from usage might
be difficult, as was eloquently pointed out by Eliel in his paper ‘Infelicitous
Stereochemical Nomenclature’:
Eliel EL.
Chirality
1997,
9:
428
<A NAME="RA52108ST-20">20 </A> For an account of the history
and development of microbial transformations and a vast compilation
of reactions, strains, and metabolites see:
Kieslich K.
Microbial Transformations of Non-Steroid Cyclic
Compounds
Thieme;
Stuttgart:
1976.
<A NAME="RA52108ST-21A">21a </A>
Faber K.
Biotransformations
in Organic Chemistry: A Textbook
Springer;
Berlin:
1997.
<A NAME="RA52108ST-21B">21b </A>
Enzyme
Catalysis in Organic Synthesis
Vols. 1, 2:
Drauz K.
Waldman H.
Wiley-VCH;
Weinheim:
1995.
<A NAME="RA52108ST-21C">21c </A>
Wong C.-H.
Whitesides GM.
Enzymes
in Synthetic Organic Chemistry
Pergamon;
Kidlington
(Oxford UK):
1994.
<A NAME="RA52108ST-22">22 </A> Review:
ZoBell CE.
Bacteriol. Rev.
1946,
10:
1
<A NAME="RA52108ST-23">23 </A>
Rahn O.
Zentralbl.
Bakteriol. Parasitenkd. Infektionskr. 2
1906,
16:
382
<A NAME="RA52108ST-24">24 </A>
Störmer K.
Zentralbl.
Bakteriol. Parasitenkd. Infekitonskr. 2
1908,
20:
282
<A NAME="RA52108ST-25A">25a </A>
Gibson DT.
Koch JR.
Kallio RE.
Biochemistry
1968,
7:
2653
<A NAME="RA52108ST-25B">25b </A>
Gibson DT.
Koch JR.
Schuld CL.
Kallio RE.
Biochemistry
1968,
7:
3795
<A NAME="RA52108ST-25C">25c </A> Review:
Gibson DT.
Subramanian V. In Microbial Degradation of Organic Compounds
Gibson DT.
Marcel
Dekker;
New York:
1984.
p.181-252
This compound was produced with
relatively low enantiomeric excess:
<A NAME="RA52108ST-26A">26a </A>
Ziffer H.
Kabuto K.
Gibson
DT.
Kobal VM.
Jerina DM.
Tetrahedron
1977,
33:
2491 (racemate was reported)
<A NAME="RA52108ST-26B">26b </A>
Boyd DR.
Sharma
ND.
Coen GP.
Grey PJ.
Malone JF.
Gawronski J.
Chem.
Eur. J.
2007,
13:
5804 (6% ee
was reported)
<A NAME="RA52108ST-26C">26c </A>
Reference 47d (15% ee
was reported).
<A NAME="RA52108ST-27">27 </A>
Ballard DGH.
Courtis A.
Shirley IM.
Taylor SC.
J.
Chem. Soc., Chem. Commun.
1983,
954
<A NAME="RA52108ST-28-A">28-a </A>
Ley SV.
Sternfeld F.
Taylor S.
Tetrahedron Lett.
1987,
28:
225
<A NAME="RA52108ST-28-B">28-b </A>
Ley SV.
Sternfeld F.
Tetrahedron
1989,
45:
3463
<A NAME="RA52108ST-29">29 </A>
Hudlicky T.
Luna H.
Barbieri G.
Kwart LD.
J. Am. Chem. Soc.
1988,
110:
4735
For compilations of prostaglandin
syntheses see:
<A NAME="RA52108ST-30A">30a </A>
Axen U.
Pike JE.
Schneider WP.
In The Total Synthesis
of Natural Products
Vol. 1:
Apsimon J.
Wiley-Interscience;
New
York:
1972.
p.81-142
<A NAME="RA52108ST-30B">30b </A>
Corey EJ.
Cheng X.-M. In The Logic of Chemical Synthesis
John Wiley & Sons;
New
York:
1989.
p.250-309
<A NAME="RA52108ST-31">31 </A>
Aldrich catalog numbers for cis -dihydrodiols derived from various
aromatic compounds: bromobenzene (48-949-2), chlorobenzene (48,950-6),
biphenyl (48,963-8), and naphthalene (49,032-6).
<A NAME="RA52108ST-32">32 </A>
Boyland E.
Levi AA.
Biochem. J.
1935,
29:
2679
<A NAME="RA52108ST-33">33 </A>
Hayaishi O.
Katagiri M.
Rothberg S.
J.
Am. Chem. Soc.
1955,
77:
5450
<A NAME="RA52108ST-34">34 </A> For a review of diogygenase enzymes
see:
Bugg TDH.
Tetrahedron
2003,
59:
7075
<A NAME="RA52108ST-35">35 </A>
Gibson DT.
Hensley M.
Yoshioka H.
Mabry TJ.
Biochemistry
1970,
9:
1626
<A NAME="RA52108ST-36">36 </A>
Zylstra GJ.
Gibson DT.
J. Biol. Chem.
1989,
264:
14940
<A NAME="RA52108ST-37A">37a </A>
Bui VP.
Hansen TV.
Stenstrom Y.
Hudlicky T.
Green
Chem.
2000,
2:
263
<A NAME="RA52108ST-37B">37b </A>
Bui VP.
Hudlicky T.
Hansen TV.
Stenstrom Y.
Tetrahedron
Lett.
2002,
43:
2839
<A NAME="RA52108ST-38A">38a </A>
Draths KM.
Pompliani DL.
Conley DL.
Frost
JW.
Berry A.
Disbrow GL.
Staversky RJ.
Lievense JC.
J.
Am. Chem. Soc.
1992,
114:
3956
<A NAME="RA52108ST-38B">38b </A>
Draths KM.
Frost JW.
J.
Am. Chem. Soc.
1995,
117:
2395
<A NAME="RA52108ST-39">39 </A>
Yoshida Y.
Ikura Y.
Kudo T.
Biosci.,
Biotechnol., Biochem.
1997,
61:
46
<A NAME="RA52108ST-40">40 </A>
Endoma MA.
Bui VP.
Hansen J.
Hudlicky T.
Org. Process Res. Dev.
2002,
6:
525
<A NAME="RA52108ST-41">41 </A>
Hudlicky T.
Stabile M.
Gibson DT.
Whited GM.
Org. Synth.
1999,
76:
77
<A NAME="RA52108ST-42">42 </A>
Karlsson A.
Parales JV.
Parales RE.
Gibson DT.
Eklund H.
Ramaswamy S.
Science
2003,
299:
1039
<A NAME="RA52108ST-43">43 </A>
Jeffrey AM.
Yah HJC.
Jerina DM.
Patel TR.
Davey JF.
Gibson DT.
Biochemistry
1975,
14:
575
<A NAME="RA52108ST-44">44 </A>
Carredano E.
Karlsson A.
Kauppi B.
Choudhury D.
Parales RE.
Parales JV.
Lee K.
Gibson DT.
Eklund H.
Ramaswamy S.
J. Mol. Biol.
2000,
296:
701
<A NAME="RA52108ST-45">45 </A>
Bui VP.
Nguyen M.
Hansen J.
Baker J.
Hudlicky T.
Can.
J. Chem.
2002,
80:
708
<A NAME="RA52108ST-46">46 </A> For recent discussion of possible
mechanisms for the enzymatic dihydroxylation see:
Boyd DR.
Bugg TDH.
Org.
Biomol. Chem.
2006,
4:
181
<A NAME="RA52108ST-47A">47a </A>
Johnson RA.
Organic
Reactions
Vol. 63:
John Wiley and Sons,
Inc.;
New York:
2004.
p.117-264
<A NAME="RA52108ST-47B">47b </A>
Boyd DR.
Sharma ND.
Allen CCR.
Curr. Opin. Biotechnol.
2001,
12:
564
<A NAME="RA52108ST-47C">47c </A>
Hudlicky T.
Gonzalez D.
Gibson DT.
Aldrichimica
Acta
1999,
32:
35
<A NAME="RA52108ST-47D">47d </A>
Boyd DR.
Sheldrake GN.
Nat.
Prod. Rep.
1998,
309
<A NAME="RA52108ST-47E">47e </A>
Hudlicky T.
Reed JW. In Advances
in Asymmetric Synthesi s
Vol. 1:
Hassner A.
JAI Press;
Greenwich (CT):
1995.
p.271-312
<A NAME="RA52108ST-47F">47f </A>
Carless HAJ.
Tetrahedron: Asymmetry
1992,
3:
795
<A NAME="RA52108ST-47G">47g </A>
Brown SM.
Hudlicky T. In Organic Synthesis: Theory and Application s
Vol.
2:
Hudlicky T.
JAI
Press;
Greenwich (CT):
1993.
p.113-176
<A NAME="RA52108ST-47H">47h </A>
Widdowson DA.
Ribbons DW.
Thomas SD.
Janssen Chim. Acta
1990,
8:
3
<A NAME="RA52108ST-48">48 </A>
Safety notice: There
are some hazards in handling and storage, especially for the cis -dihydrodiol derived from β-bromobenzene.
This particular compound cannot be stored in solid form free of
solvent. On several occasions it exploded on vacuum drying and on
one occasion a bottle with about 25 g of crystalline solid exploded
and burned in a freezer at -78 ˚C. The
aromatization of this material is highly exothermic and catalyzed
by trace amounts of phenol; therefore, the isolation and handling
of cis -dihydrodiols in amounts over 5-10
g must be attended to with caution. Ethyl acetate extracts must
be washed with saturated carbonate solution to remove any trace
amounts of the corresponding phenols, which may catalyze aromatization.
In our own experience, we have encountered no problems with the cis -dihydrodiols derived from chloro-
and bromobenzene; however, it is advisable to handle larger amounts
in solution rather than in solid state.
<A NAME="RA52108ST-49">49 </A>
Boyd DR.
Sharma ND.
Hand MV.
Groocock MR.
Kerley NA.
Dalton H.
Chima J.
Sheldrake GN.
J. Chem.
Soc., Chem. Commun.
1993,
974
<A NAME="RA52108ST-50">50 </A>
Gonzalez D.
Schapiro V.
Seoane G.
Hudlicky T.
Abboud K.
J.
Org. Chem.
1997,
62:
1194
<A NAME="RA52108ST-51A">51a </A>
Hudlicky T.
Boros CH.
Boros EE.
Synthesis
1992,
174
<A NAME="RA52108ST-51B">51b </A>
Butora G.
Gum AG.
Hudlicky T.
Abboud
KA.
Synthesis
1998,
275
<A NAME="RA52108ST-52">52 </A>
Hudlicky T.
Rulin F.
Tsunoda T.
Price JD.
J. Am. Chem. Soc.
1990,
112:
9439
<A NAME="RA52108ST-53">53 </A>
For more detailed discussion of enantiodivergent
design see references 47c, 47e, 83a, and 90.
<A NAME="RA52108ST-54">54 </A>
Ensley BD.
Ratzkin BJ.
Osslund TD.
Simon MJ.
Wackett LP.
Gibson DT.
Science
1983,
222:
167
<A NAME="RA52108ST-55A">55a </A>
Ensley BD. inventors; US Patent 4520103.
; Chem. Abstr. 1985 , 101 , 108957
<A NAME="RA52108ST-55B">55b </A>
Amgen-Genencor
process for indigo: Presented by G. Whited at 1995 Biotrans Conference,
Warwick UK.
<A NAME="RA52108ST-56">56 </A>
Hudlicky T.
Seoane G.
Pettus T.
J.
Org. Chem.
1989,
54:
4239
<A NAME="RA52108ST-57A">57a </A>
Hudlicky T.
Entwistle DA.
Pitzer KK.
Thorpe
AJ.
Chem. Rev.
1996,
96:
1195
<A NAME="RA52108ST-57B">57b </A>
Hudlicky T.
Chem. Rev.
1996,
96:
3
<A NAME="RA52108ST-58">58 </A>
Hudlicky T.
Olivo HF.
J. Am. Chem. Soc.
1992,
114:
9694
<A NAME="RA52108ST-59">59 </A>
Tian X.
Hudlicky T.
Königsberger K.
J.
Am. Chem. Soc.
1995,
117:
3643
<A NAME="RA52108ST-60">60 </A>
Gonzalez D.
Martinot T.
Hudlicky T.
Tetrahedron
Lett.
1999,
40:
3077
<A NAME="RA52108ST-61A">61a </A>
ent -7-deoxypancratistatin:
Akgün H.
Hudlicky T.
Tetrahedron
Lett.
1999,
40:
3081
<A NAME="RA52108ST-61B">61b </A> ent-Lycoricidine:
Matveenko M.
Kokas OJ.
Banwell MG.
Willis AC.
Org.
Lett.
2007,
9:
3683
<A NAME="RA52108ST-61C">61c </A> ent-Narciclasine:
Matveenko M.
Banwell MG.
Willis AC.
Tetrahedron
2008,
64:
4817
<A NAME="RA52108ST-62">62 </A>
Omori AT.
Finn KJ.
Leisch H.
Carroll RJ.
Hudlicky T.
Synlett
2007,
2859
<A NAME="RA52108ST-63">63 </A>
Kokas OJ.
Banwell MG.
Willis AC.
Tetrahedron
2008,
64:
6444
<A NAME="RA52108ST-64A">64a </A>
Ley SV.
Redgrave AJ.
Synlett
1990,
393
<A NAME="RA52108ST-64B">64b </A>
Hudlicky T.
Mandel M.
Rouden J.
Lee RS.
Bachmann B.
Dudding T.
Yost K.
Merola JS.
J. Chem. Soc., Perkin Trans. 1
1994,
1553
<A NAME="RA52108ST-64C">64c </A>
Nguyen BV.
York C.
Hudlicky T.
Tetrahedron
1997,
53:
8807
<A NAME="RA52108ST-64D">64d </A>
Brammer LE.
Hudlicky T.
Tetrahedron:
Asymmetry
1998,
9:
2011
<A NAME="RA52108ST-64E">64e </A>
Vitelio C.
Bellomo A.
Brovetto M.
Seoane G.
Gonzalez D.
Carbohydr.
Res.
2004,
339:
1773
<A NAME="RA52108ST-64F">64f </A>
Bellomo A.
Giacomini C.
Brenta B.
Seoane G.
Gonzalez D.
Synth.
Commun.
2007,
37:
3509
<A NAME="RA52108ST-65A">65a </A>
Hudlicky T.
Abboud KA.
Bolonick J.
Maurya R.
Stanton ML.
Thorpe AJ.
Chem. Commun.
1996,
1717
<A NAME="RA52108ST-65B">65b </A>
Paul BJ.
Martinot TA.
Willis J.
Hudlicky T.
Synthesis
2001,
952
<A NAME="RA52108ST-65C">65c </A>
Paul BJ.
Willis J.
Martinot
TA.
Ghiviriga I.
Hudlicky T.
J. Am. Chem. Soc.
2002,
124:
10416
<A NAME="RA52108ST-66-A">66-a </A>
Ley SV.
Sternfeld F.
Terahedron
Lett.
1988,
29:
5305
<A NAME="RA52108ST-66-B">66-b </A>
Ley SV.
Parra M.
Redgrave AJ.
Sternfeld F.
Tetrahedron
1990,
46:
4995
<A NAME="RA52108ST-66-C">66-c </A>
Ley SV.
Pure Appl. Chem.
1990,
62:
2031
<A NAME="RA52108ST-67">67 </A>
Hudlicky T.
Natchus MG.
J. Org. Chem.
1992,
57:
4740
<A NAME="RA52108ST-68">68 </A>
Banwell MG.
Edwards AJ.
Harfoot GJ.
Jolliffe KA.
Tetrahedron
2004,
60:
535
<A NAME="RA52108ST-69">69 </A>
Banwell MG.
Austin KAB.
Willis AC.
Tetrahedron
2007,
63:
6388
<A NAME="RA52108ST-70">70 </A>
Banwell MG.
McLeod MD.
Riches AG.
Aust. J. Chem.
2004,
57:
53
<A NAME="RA52108ST-71">71 </A>
Banwell MG.
Forman GS.
J. Chem. Soc., Perkin
Trans. 1
1996,
2565
<A NAME="RA52108ST-72">72 </A>
Bui VP.
Hudlicky T.
Tetrahedron
2004,
60:
661
<A NAME="RA52108ST-73">73 </A>
Banwell MG.
Loong DTJ.
Willis AC.
Aust. J. Chem.
2005,
58:
511
<A NAME="RA52108ST-74">74 </A>
Boyd DR.
Sharma ND.
Llamas NM.
Malone JF.
O’Dowd CR.
Allen CCR.
Org.
Biomol. Chem.
2005,
3:
1953
<A NAME="RA52108ST-75">75 </A>
Hudlicky T.
Rouden J.
Luna H.
Allen S.
J. Am. Chem. Soc.
1994,
116:
5099
<A NAME="RA52108ST-76A">76a </A>
Hudlicky T.
Luna H.
Price JD.
Rulin F.
J.
Org. Chem.
1990,
55:
4683
<A NAME="RA52108ST-75B">75b </A>
Hudlicky T.
Seoane G.
Price JD.
Gadamasetti K.
Synlett
1990,
433
<A NAME="RA52108ST-77A">77a </A>
Hudlicky T.
Nugent T.
Griffith W.
J. Org. Chem.
1994,
59:
7944
<A NAME="RA52108ST-77B">77b </A>
Nugent TC.
Hudlicky T.
J. Org. Chem.
1998,
63:
510
<A NAME="RA52108ST-78A">78a </A>
Boyd DR.
Sharma ND.
Sbircea L.
Murphy D.
Belhocine T.
Malone JF.
James SL.
Allen CCR.
Hamilton JTG.
Chem.
Commun.
2008,
5535
<A NAME="RA52108ST-78B">78b </A>
Sbircea L.
Sharma ND.
Clegg W.
Harrington
RW.
Horton PN.
Hursthouse MB.
Apperley DC.
Boyd DR.
James SL.
Chem.
Commun.
2008,
5538
<A NAME="RA52108ST-79A">79a </A>
Bellomo A.
Gonzalez D.
Stefani HA.
J. Organomet. Chem.
2008,
693:
1136
<A NAME="RA52108ST-79B">79b </A>
Heguaburu V.
Mandolesi
SM.
Schapiro V.
Pandolfi E.
Tetrahedron
Lett.
2008,
49:
6787
<A NAME="RA52108ST-80A">80a </A>
Boyd DR.
Sharma ND.
Barr SA.
Dalton H.
Chima J.
Whited G.
Seemayer R.
J. Am. Chem. Soc.
1994,
116:
1147
<A NAME="RA52108ST-80B">80b </A>
Allen CCR.
Boyd DR.
Dalton H.
Sharma ND.
Brannigan I.
Kerley NA.
Sheldrake GN.
Taylor SC.
J. Chem. Soc., Chem. Commun.
1995,
117
<A NAME="RA52108ST-81">81 </A>
Motherwell WB.
Williams AS.
Angew. Chem., Int.
Ed. Engl.
1995,
34:
2031
<A NAME="RA52108ST-82">82 </A>
Jung PMJ.
Motherwell WB.
Williams AS.
Chem. Commun.
1997,
1283
<A NAME="RA52108ST-83">83 </A>
Feng Y.
Ke C.
Xue G.
Que L.
Chem. Commun.
2009,
50
<A NAME="RA52108ST-84A">84a </A>
Hudlicky T.
Chem. Rev.
1996,
96:
3
<A NAME="RA52108ST-84B">84b </A>
Hudlicky T.
Natchus MB. In Organic
Synthesis: Theory and Applications
Vol. 2:
Hudlicky T.
JAI Press;
Greenwich
(CT):
1993.
p.1-23
<A NAME="RA52108ST-85">85 </A>
‘Bibliometric Analysis for
Papers on Topics Related to Pollution Prevention (P2)’ can
be accessed at http://es.epa.gov/ncer/publications/bibliometrics/p2_bibliometric_032905.html,
2005 .
<A NAME="RA52108ST-86">86 </A>
Anastas PT.
Warner JC.
Green
Chemistry: Theory and Practice
Oxford University
Press;
New York:
1998.
<A NAME="RA52108ST-87">87 </A>
Schultzen O.
Naunyn B.
Arch. Anat. Physiol.
1867,
349
<A NAME="RA52108ST-88">88 </A>
Munk J.
Pfluegers
Arch. Physiol.
1876,
12:
142
<A NAME="RA52108ST-89">89 </A> Abstract by:
Stephens T.
J.
Chem. Soc. Abstr.
1876,
212
<A NAME="RA52108ST-89A">89a </A>
Bui V.
Hansen TV.
Stenstrom Y.
Ribbons DW.
Hudlicky T.
J. Chem. Soc., Perkin Trans.
1
2000,
1669
<A NAME="RA52108ST-89B">89b </A>
Bui VP.
Hansen TV.
Stenstrom Y.
Hudlicky T.
Ribbons DW.
New. J. Chem.
2001,
25:
116
<A NAME="RA52108ST-91">91 </A> For a list of unsolved problems
in synthesis see:
Hudlicky T.
Reed JW.
The Way of Synthesis
Wiley-VCH;
Weinheim:
2007.
p.11