Synlett 2009(6): 973-977  
DOI: 10.1055/s-0028-1087959
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Palladium-Catalyzed Arylation of the THP Derivative of (Z)-2-Butene-1,4-diol with Arenediazonium Salts and the Synthesis of β-Aryl-γ-butyrolactones

Sandro Cacchi*, Giancarlo Fabrizi, Antonella Goggiamani, Alessio Sferrazza
Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi ‘La Sapienza’, P. le A. Moro 5, 00185 Rome, Italy
Fax: +39(06)49912780; e-Mail: sandro.cacchi@uniroma1.it;
Further Information

Publication History

Received 16 December 2008
Publication Date:
16 March 2009 (online)

Abstract

The reaction of arenediazonium tetrafluoroborates with the THP derivative of (Z)-2-butene-1,4-diol in the presence of Pd(OAc)2 in MeOH at 35 ˚C gives 4-aryl-2-methoxytetrahydrofurans in good to high yields. The reaction tolerates a variety of useful functional groups including ester, keto, cyano, nitro, chloro, and bromo functionalities as well as ortho substituents. Based on this process, γ-aryl-β-butyrolactone derivatives can be prepared via a sequential palladium-catalyzed arylation-cyclization-oxidation protocol that omits the isolation of 4-aryl-2-methoxytetrahydro­furan intermediates.

    References and Notes

  • 1 Kikukawa K. Matsuda T. Chem. Lett.  1977,  159 
  • For some recent selected references, see:
  • 2a Brunner H. Le Cousturier de Courcy N. Genêt J.-P. Synlett  2000,  201 
  • 2b Cai MZ. Hu RH. Zhou J. Chin. Chem. Lett.  2001,  12:  861 
  • 2c Darses S. Pucheault M. Genêt J.-P. Eur.
    J. Org. Chem.  2001,  1121 
  • 2d Sengupta S. Bhattacharyya S. Tetrahedron Lett.  2001,  42:  2035 
  • 2e Andrus MB. Song C. Zhang J. Org. Lett.  2002,  4:  2079 
  • 2f Selvakumar K. Zapf A. Spannenberg A. Beller M. Chem. Eur. J.  2002,  8:  3901 
  • 2g Andrus MB. Ma Y. Zang Y. Song C. Tetrahedron Lett.  2002,  43:  9137 
  • 2h Ma Y. Song C. Chai Q. Ma C. Andrus MB. Synthesis  2003,  2886 
  • 2i Wang C. Tan L.-S. He J.-P. Hu H.-W. Xu J.-H. Synth. Commun.  2003,  33:  773 
  • 2j Masllorens J. Moreno-Mañas M. Pla-Quintana A. Roglans A. Org. Lett.  2003,  5:  1559 
  • 2k Schmidt B. Chem. Commun.  2003,  1656 
  • 2l Nelson ML. Ismail MY. McIntyre L. Bhatia B. Viski P. Hawkins P. Rennie G. Andorsky D. Messersmith D. Stapleton K. Dumornay J. Sheahan P. Verma AK. Warchol T. Levy SB. J. Org. Chem.  2003,  68:  5838 
  • 2m Dai M. Liang B. Wang C. Chen J. Yang Z. Org. Lett.  2004,  6:  221 
  • 2n Kabalka GW. Dong G. Venkataiah B. Tetrahedron Lett.  2004,  45:  2775 
  • 2o Xu L.-H. Zhang Y.-Y. Wang X.-L. Chou J.-Y. Dyes Pigm.  2004,  62:  283 
  • 2p Sabino AA. Machado AHL. Correia CRD. Eberlin MN. Angew. Chem. Int. Ed.  2004,  43:  2514 
  • 2q Sabino AA. Machado AHL. Correia CRD. Eberlin MN. Angew. Chem. Int. Ed.  2004,  43:  4389 
  • 2r Garcia ALL. Carpes MJS. Montes de Oca ACB. dos Santos MAG. Santana CC. Correia CRD.
    J. Org. Chem.  2005,  70:  1050 
  • 2s Artuso E. Barbero M. Degani I. Dughera S. Fochi R. Tetrahedron  2006,  62:  3146 
  • 2t Pastre JC. Correia CRD. Org. Lett.  2006,  8:  1657 
  • 2u Perez R. Veronese D. Coelho F. Antunes OAC. Tetrahedron Lett.  2006,  47:  1325 
  • 3a Kikukawa K. Nagira K. Wada F. Matsuda T. Tetrahedron  1981,  37:  31 
  • 3b Hu R.-H. Liu X.-L. Cai M.-Z. Jiangxi Shifan Daxue Xuebao, Ziran Kexueban  2001,  25:  246 ; Chem. Abstr. 2001, 136, 355024
  • 3c Masllorens J. Bouquillon S. Roglans A. Hénin F. Muzart J. J. Organomet. Chem.  2005,  690:  3822 
  • 3d Barbero M. Cadamuro S. Dughera S. Synthesis  2006,  3443 
  • 4 For an excellent recent review on the palladium chemistry of arenediazonium salts, see: Roglans A. Pla-Quintana A. Moreno-Mañas M. Chem. Rev.  2006,  106:  4622 
  • 5a Mandai T. Hasegawa S.-i. Fujimoto T. Kawada M. Nokami J. Tsuji J. Synlett  1989,  85 
  • 5b Arcadi A. Bernocchi E. Cacchi S. Marinelli F. Tetrahedron  1991,  47:  1525 
  • For some recent reviews on the palladium-catalyzed synthesis of heterocycles from unsaturated alcohols, see:
  • 6a Muzart J. Tetrahedron  2005,  61:  4179 
  • 6b Muzart J. Tetrahedron  2005,  61:  5955 
  • 6c Wolfe JP. Eur. J. Org. Chem.  2007,  571 
  • 6d Wolfe JP. Synlett  2008,  2913 
  • 7a Cacchi S. Fabrizi G. Goggiamani A. Persiani D. Org. Lett.  2008,  10:  1597 
  • 7b Bartoli G. Cacchi S. Fabrizi G. Goggiamani A. Synlett  2008,  2508 
  • Alternatively, as suggested by one of the referees, 5b might arise from 4b via proton loss and addition of MeOH to the resultant dihydrofuran (although no evidence was attained of the formation of such an intermediate). The tendency of furanols 1 to dehydrate upon distillation has been described:
  • 9a Chalk AL. Magennis SA. J. Org. Chem.  1976,  41:  273 
  • In the case of formation of the dihydrofuran intermediate, the addition of MeOH to the carbon-carbon double bond might occur via an acid-catalyzed process:
  • 9b Wabnitz TC. Yu J.-Q. Spencer JB. Chem. Eur. J.  2004,  10:  484 
  • Palladium-catalyzed hydroalkoxylation of carbon-carbon double bonds has also been reported:
  • 9c Gligorich KM. Schultz MJ. Sigman MS. J. Am. Chem. Soc.  2006,  128:  2794 
  • 9d Matsukawa Y. Mizukado J. Quan H. Tamura M. Sekiya A. Angew. Chem. Int. Ed.  2005,  44:  1128 ; see also ref. 6a,b
  • For some selected references, see:
  • 10a Grieco PA. Oguri T. Yokoyama Y. Tetrahedron Lett.  1978,  419 
  • 10b Masaki Y. Nagata K. Kaji K. Chem. Lett.  1983,  1835 
  • 10c Shing TKM. Yeung Y.-Y. Chem.-Eur. J.  2006,  12:  8367 
  • 10d Geng Z. Chen B. Chiu P. Angew. Chem. Int. Ed.  2006,  45:  6197 
  • 10e La Clair JJ. Angew. Chem. Int. Ed.  2006,  45:  2769 
  • 10f Khoury C. Minier M. Le Goffic F. Rager M.-N. J. Carbohydr. Chem.  2007,  26:  395 
  • 10g Prasad KR. Anbarasan P. Tetrahedron: Asymmetry  2007,  18:  2479 
  • 10h Wan S. Gunaydin H. Houk KN. Floreancig PE. J. Am. Chem. Soc.  2007,  129:  7915 
8

The stereochemistry of 5b was assigned by NMR analysis. That of the other 4-aryl-2-methoxytetrahydrofuran derivatives has been assigned based on these data.

11

Preparation of 4-Aryl-2-methoxytetrahydrofuran (5) via Palladium-Catalyzed Reaction of Arenediazonium Tetrafluoroborates 2 with the THP Derivative of ( Z )-2-Buten-1,4-diol (6) - Typical Procedure To a stirred solution of 6 (128.2 mg, 0.50 mmol) and Pd(OAc)2 (5.6 mg, 0.025 mmol) in anhyd MeOH (4.0 mL), 2a (221.9 mg, 1.0 mmol) was added at r.t. under argon. The reaction mixture was warmed at 35 ˚C and stirred for 1 h (the reactor was protected from light with aluminium film). After cooling, the reaction mixture was diluted with Et2O, washed with a sat. NaHCO3 solution, dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel [n-hexane-EtOAc, 75:25 (v/v)] to afford 75.2 mg (72% yield) of 5a as an approximately 60:40 diastereomeric mixture. The cis-isomer was isolated and characterized.
Oil. IR (neat): 2940, 1606, 1077 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.25 (d, J = 8.6 Hz, 2 H), 6.87 (d, J = 8.6 Hz,
2 H), 5.19-5.15 (dd, J 1 = 5.5 Hz, J 2 = 3.0 Hz, 1 H), 4.17 (t, J = 8.0 Hz, 1 H), 3.81 (s, 3 H), 3.76-3.71 (m, 1 H), 3.45 (s, 3 H), 3.39-3.32 (m, 1 H), 2.70-2.52 (m, 1 H), 2.00-1.85 (m, 1 H). ¹³C NMR (100.6 MHz, CDCl3): δ = 158.4, 133.2, 128.7, 114.0, 110.8, 105.9, 73.2, 55.3, 55.0, 43.6, 41.2. MS: m/z (%) = 208 (18) [M+], 177 (22), 147 (68).

12

Preparation of β-Aryl-γ-butyrolactones 13 from Arenediazonium Tetrafluoroborates 2 and the THP Derivative of ( Z )-2-Buten-1,4-diol (6) via a Sequential Palladium-Catalyzed Arylation-Cyclization-Oxidation Protocol - Typical Procedure To a stirred solution of 6 (128.2 mg, 0.50 mmol) and Pd(OAc)2 (5.6 mg, 0.025 mmol) in anhyd MeOH (4.0 mL), 2b (250.0 mg, 1.0 mmol) was added at r.t. under argon. The reaction mixture was warmed at 35 ˚C and stirred for 45 min (the reactor was protected from light with aluminium film). After this time, the reaction mixture was diluted with Et2O, washed with a sat. NaHCO3 solution, dried over Na2SO4, and concentrated under reduced pressure. The residue was filtrated through a short bed of SiO2 and concentrated under reduced pressure. The crude was dissolved in CH2Cl2 (3 mL) and MCPBA (123.3 mg, 0.5 mmol; a commercially available 70% MCPBA was used) and BF3˙OEt2 (25 µL, 0.2 mmol) were added. The cloudy reaction mixture was allowed to stir at r.t. for 24 h and then poured into an NaHSO3 aq solution. The organic layer was removed, and the aqueous layer was washed with CH2Cl2. The organic layer was washed with aq NaHCO3 , dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel
[n-hexane-EtOAc, 75:25 (v/v)] to afford 81.4 mg (74%)
of 13b.
Mp 78-80 ˚C. IR (KBr): 1778, 1714, 1282, 1012 cm. ¹H NMR (400 MHz, CDCl3): δ = 8.02 (d, J = 8.3 Hz, 2 H), 7.31 (d, J = 8.3 Hz, 2 H), 4.68 (dd, J 1 = 8.8 Hz, J 2 = 7.9 Hz, 1 H), 4.28 (dd, J 1 = 8.9 Hz, J 2 = 7.9 Hz, 1 H), 3.90 (s, 3 H), 3.86 (qp, J = 8.3 Hz, 1 H), 2.96 (dd, J 1 = 9.1 Hz, J 2 = 8.8 Hz, 1 H), 2.68 (dd, J 1 = 8.8 Hz, J 2 = 17.2 Hz, 1 H). ¹³C NMR (100.6 MHz, CDCl3): δ = 175.9, 166.5, 144.7, 130.4, 129.7, 126.8, 73.6, 52.2, 41.0, 35.5. MS: m/z (%) = 220 (14) [M+], 162 (59), 131 (100), 77 (89).