Synlett 2009(7): 1091-1094  
DOI: 10.1055/s-0028-1088113
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Pd-Catalyzed Cross-Coupling Reactions of Pyridine Carboxylic Acid Chlorides with Alkylzinc Reagents

Toshiyuki Iwai*, Takeo Nakai, Masatoshi Mihara, Takatoshi Ito, Takumi Mizuno, Toshinobu Ohno*
Osaka Municipal Technical Research Institute, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan
Fax: +81(6)69638049; e-Mail: iwai@omtri.city.osaka.jp; e-Mail: ohno@omtri.city.osaka.jp;
Further Information

Publication History

Received 2 February 2009
Publication Date:
26 March 2009 (online)

Abstract

The efficient cross-coupling reaction to afford ketones from pyridine carboxylic acid chlorides and alkylzinc reagents in the presence of Pd(phen)Cl2 is reported. In the case of chloronico­tinoyl chlorides, none of Negishi cross-coupling products of 2-chloroazine moiety was formed. The catalyst loading could be reduced up to 0.01 mol%.

    References and Notes

  • 1a Dieter RK. Tetrahedron  1999,  55:  4177 
  • 1b Lawrence NJ. J. Chem. Soc., Perkin Trans. 1  1988,  1739 
  • 2 Heaney H. In Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Pergamon Press; Oxford: 1991.  p.733 
  • 3a Nahm S. Weinreb SM. Tetrahedron Lett.  1982,  22:  3815 
  • 3b Balasubramaniam S. Aiden IS. Synthesis  2008,  3703 
  • 4 Handbook of Functionalized Organometallics   Knochel P. Wiley-VCH; New York: 2005. 
  • 5a Knochel P. Singer RD. Chem. Rev.  1993,  93:  2117 
  • 5b Erdik E. Organozinc Reagents in Organic Synthesis   CRC Press; Boca Raton FL: 1996. 
  • 5c Organozinc Reagents: A Practical Approach   Knochel P. Jones P. Oxford University Press; New York: 1999. 
  • 5d Knochel P. Millot N. Rodriguez A. Tucker CE. Org. React.  2001,  58:  417 
  • 5e Knochel P. Calaza MI. Hupe E. In Metal-Catalyzed Cross-Coupling Reactions   2nd ed.:  de Meijere A. Diederich F. Wiley-VCH; New York: 2004. 
  • 6a Ishino Y. Mihara M. Kageyama M. Nishiguchi I. Bull Chem. Soc. Jpn.  1998,  71:  2669 
  • 6b Ishino Y. Mihara M. Kageyama M. Tetrahedron Lett.  2002,  43:  6601 
  • 6c Ito T. Ishino Y. Mizuno T. Ishikawa A. Kobayashi J. Synlett  2002,  2116 
  • 6d Iwai T. Ito T. Mizuno T. Ishino Y. Tetrahedron Lett.  2004,  45:  1083 
  • 7a Negishi E. King AO. Okukado N. J. Org. Chem.  1977,  42:  1821 
  • 7b King AO. Okukado N. Negishi E.
    J. Chem. Soc., Chem. Commun.  1977,  683 
  • 7c Negishi E. Acc. Chem. Res.  1982,  15:  340 
  • 8 Negishi E. Bagheri V. Chatterjee S. Luo F.-T. Miller JA. Stoll AT. Tetrahedron Lett.  1983,  24:  5181 
  • 9a Knochel P. Yeh MCP. Berk SC. Talbert J. J. Org. Chem.  1988,  53:  2392 
  • 9b Reddy CK. Knochel P. Angew. Chem., Int. Ed. Engl.  1996,  35:  1700 
  • 10a Sato T. Naruse K. Enokiya M. Fujisawa T. Chem. Lett.  1981,  1135 
  • 10b Sato T. Itoh T. Fujisawa T. Chem. Lett.  1982,  1559 
  • 11 Grey RA. J. Org. Chem.  1984,  49:  2288 
  • 12a Tamaru Y. Ochiai H. Sanda F. Yoshida Z. Tetrahedron Lett.  1985,  45:  5529 
  • 12b Tamaru Y. Ochiai H. Nakamura T. Tsubaki K. Yoshida Z. Tetrahedron Lett.  1985,  45:  5559 
  • 13a Tokuyama H. Yokoshima S. Yamashita T. Fukuyama T. Tetrahedron Lett.  1998,  39:  3189 
  • 13b Mori Y. Seki M. Tetrahedron Lett.  2004,  45:  7343 
  • 14a Kneisel FF. Dochnahl M. Knochel P. Angew. Chem. Int. Ed.  2004,  43:  1017 
  • 14b Wang X.-J. Zhang L. Sun X. Xu Y. Krishnamurthy D. Senanayake CH. Org. Lett.  2005,  7:  5593 
  • 17a Hasníl Z. Œilhár P. Hocek M. Synlett  2008,  543 
  • 17b Chekmarev DS. Stepanov AE. Kasatkin AN. Tetrahedron Lett.  2005,  46:  1303 
  • 21a Luo X. Zhang H. Duan H. Liu Q. Zhu L. Zhang T. Lei A. Org. Lett.  2007,  9:  4571 
  • 21b Liu J. Deng Y. Wang H. Zhang H. Yu G. Wu B. Zhang H. Li Q. Marder TB. Yang Z. Lei A. Org. Lett.  2008,  10:  2661 
15

Typical Procedure for Preparation of Alkylzinc Reagents
Under argon atmosphere, to a mixture of Zn metal (196 mg, 3.0 mmol) and DMI (0.43 mL, 4.0 mmol) in MeCN (3.0 mL) was added one drop of TMSCl at 60 ˚C and stirred for 5 min, followed by addition of 2-phenylethyl iodide (0.43 mL, 3.0 mmol), stirring at the same temperature for 2 h, and cooling to r.t.

16

Toluene-DMI was utilized instead of benzene-DMA.

18

Stylene was detected by GC-MS.

19

Typical Procedure for the Pd-Catalyzed Cross-Coupling Reaction
Under argon atmosphere, to a suspension of 6-chloro­-nicotinoyl chloride (1a, 352 mg, 2.0 mmol) and Pd(phen)Cl2 (21 mg, 0.06 mmol) in MeCN (3.0 mL) was added alkylzinc reagent 2 and stirring at same temperature. After stirring for 2 h, sat. NH4Cl was added to the reaction mixture and extracted with EtOAc (2 × 20 mL). The combined EtOAc extract was washed with sat. NH4Cl, sat. NaHCO3 and brine, and dried over MgSO4, filtered, and concentrated in vacuo. The residue was purified by chromatography on SiO2 (hexane-EtOAc, 6:1) to give the product 3a (453 mg, 92%) as white solid.
Selected Spectra Data
Compound 3a: mp 82.9 ˚C. ¹H NMR (300 MHz, CDCl3):
δ = 8.91 (1 H, d, J = 2.4 Hz), 8.16 (1 H, dd, J = 8.4, 2.4 Hz), 7.42 (1 H, d, J = 8.3 Hz), 7.32-7.18 (5 H, m), 3.31-3.26 (2 H, m), 3.10-3.05 (2 H, m). ¹³C NMR (75.5 MHz, CDCl3):
δ = 196.63, 155.44, 149.67, 140.43, 137.87, 130.84, 128.51, 128.27, 126.25, 124.41, 40.57, 29.60. IR (KBr): 3055, 3025, 1685, 1575, 1466, 1375, 1103, 700 cm. MS (EI): m/z (relative intensity) = 245 (100) [M+], 140 (95). HRMS (EI): m/z calcd for C14H12ClNO [M+]: 245.0607; found: 245.0617.
Compound 3f: white solid, mp 52.8 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 8.97 (1 H, d, J = 2.3 Hz), 8.21 (1 H, dd, J = 8.3, 2.4 Hz), 7.45 (1 H, d, J = 8.4 Hz), 4.16 (2 H, q, J = 7.1 Hz), 3.28 (2 H, t, J = 6.5 Hz), 2.79 (2 H, t, J = 6.4 Hz), 1.27 (3 H, t, J = 7.1 Hz). ¹³C NMR (75.5 MHz, CDCl3): δ = 195.84, 172.36, 155.68, 149.73, 137.93, 130.7, 124.49, 60.76, 33.58, 27.87, 14.10. IR (KBr): 3037, 2995, 1730, 1688, 1579, 1373, 1221 cm. MS (EI): m/z (relative intensity) = 241 (31) [M+], 196 (65), 140 (100). HRMS (EI): m/z calcd for C11H12ClNO3 [M+]: 241.0506; found: 241.0504.

20

When excess amount of 2 (2.5 equiv) was used with Pd(Ph3P)4 catalyst, 4 and 6 were obtained in 45% and 38%, respectively.