RSS-Feed abonnieren
DOI: 10.1055/s-0028-1088119
A Stereoselective One-Pot Synthetic Approach to Functionalized Thietanes
Publikationsverlauf
Publikationsdatum:
26. März 2009 (online)
Abstract
A facile synthetic route to functionalized thietanes has been developed by employing one-pot, high-yielding, and highly diastereoselective three-component coupling reaction of O,O-diethyl hydrogen phosphorodithioate, aromatic aldehydes, and activated olefins. The synthesis involves Michael addition of the dithioate to acrylonitrile/methyl acrylate followed by addition of the resulting carbanion to an aldehyde and intramolecular cyclization to afford 2-arylthietane-3-carbonitriles/carboxylates at room temperature.
Key words
thietanes - phosphorodithioates - activated olefins - stereoselective synthesis - Michael addition - heterocyclization
- 1
del Buttero P.Maiorana S.Pocar D.Andrietti GD.Bocelli G.Sgarabotto P. J. Chem. Soc., Perkin Trans. 2 1974, 1483 - 2
Claus PK.Jager E. Monatsh. Chem. 1985, 116: 1153 - 3
Butkevich AN.Sokolov VV.Tomashevskii AA.Potekhin AA. Chem. Heterocycl. Compd. 2007, 43: 544 - 4
Miknis EP.Biscar JP. J. Phys. Chem. 1971, 75: 725 - 5
Zhang J.-X.Ni J.Ren X.-J.Sun L.Zhang Z.-B.Wang Z.-W. Chem. Sens. 2003, 28: 381 - 6
Crump DR. J. Chem. Ecol. 1980, 16: 341 - 7
Ohno A,Ohnishi Y, andTsuchihashi G. inventors; US 3779880. - 8
Haucourt NH.Peng L.Goethals EJ. Macromolecules 1994, 27: 1329 - 9
Adams RD. Acc. Chem. Res. 2000, 33: 171 - 10
Richardson SK.Howell AR. Synthesis 2007, 2755 - 11
Dejaegher Y.Kuz’menok NM.Zvonok AM.De Kimpe N. Chem. Rev. 2002, 102: 29 - 12
Dittmer DC.Sedergran TC. Small Ring Heterocycles, In The Chemistry of Heterocyclic Compounds Part 3, Vol. 42:Hassner A. Wiley-Interscience; New York: 1985. p.431-474 - 13
Friedel MG.Cichon MK.Carell T. Org. Biomol. Chem. 2005, 3: 1937 - 14
Farzaliev VM.Allakhvendiev MA.Magerramov AM.Shirinova NA.Dzhavadova LA.Rzaeva IA.Khalilova AZ.Aliev FY. Russ. J. Appl. Chem. 2001, 74: 114 - 15
Volynskii NP.Shevchenko SE. Petroleum Chemistry 2007, 47: 109 - 16
Ager DJ.Pentaleon DP.Henderson SA.Katritzky AR.Prakash I.Walters E. Angew. Chem. Int. Ed. 1998, 37: 1802 - 17
Searles S.Hays H.Lutz E. J. Org. Chem. 1962, 27: 2828 - 18
Lancaster M.Smith JH. Synlett 1982, 582 - 19
Nagasawa K.Yoneta A. Chem. Pharm. Bull. 1985, 33: 5048 - 20
Schaal C. Bull. Soc. Chim. Fr. 1971, 3064 - 21
Sander M. Chem. Rev. 1996, 66: 341 - 22
Ueno Y.Yadav LDS.Okawara M. Synthesis 1981, 547 - 23
Yadav LDS.Kapoor R. Synthesis 2002, 1502 - 24
Yadav LDS.Vaish A. J. Chem. Res., Synop. 1997, 90 - 25
Yadav LDS.Sharma S. Synthesis 1993, 864 - 26
Cai J.Zhou Z.Zhao G.Tang C. Org. Lett. 2002, 4: 4723 - 28
Bonini BF.Franchini MC.Fochi M.Mazzanti G.Ricci A.Zani P.Zwanenburg B. J. Chem. Soc., Perkin Trans. 1 1995, 2039
References and Notes
General Procedure
for the Synthesis of Functionalized Thietanes 4
To
a solution of O,O-diethyl
hydrogen phosphorodithioate (1, 5 mmol)
in dry benzene (5 mL) was added dropwise a suspension of NaH (120
mg, 5 mmol) in dry benzene (10 mL) with stirring at r.t. After the
addition was complete, and evolution of hydrogen gas(effervescence)
had ceased, the reaction mixture was stirred at 60 ˚C for
30 min and then cooled to r.t. Next, a solution of activated olefin 2 (5 mmol) in dry benzene (5 mL) was added,
and the reaction mixture was stirred at r.t. for 1 h followed by
the addition of aldehyde 3 (5 mmol) and
stirring at r.t. for 2-5 h (Table
[¹]
). Water (20 mL) was added,
the mixture was extracted with Et2O (3 × 20 mL),
dried over anhyd MgSO4, filtered, and evaporated under
reduced pressure. The crude product thus obtained was purified by
SiO2 chromatography (hexane-EtOAc, 95:5) to
afford an analytically pure sample of 4.
Characterization Data of Representative Compounds
Product 4 (entry 1, EWG = CN,
Ar = Ph):²8 white
solid; yield 87%; mp 47-48 ˚C. ¹H
NMR (400 MHz, CDCl3/TMS):²8 δ = 3.20
(dd, 1 H, J = 2.8,
11.6 Hz), 3.55 (dd, 1 H, J = 7.6,
11. 6 Hz), 4.12 (ddd, 1 H, J = 2.8,
7.6, 8.8 Hz), 4.50 (d,1 H, J = 8.8
Hz), 7.32-7.70 (m, 5 H). ¹³C
NMR (100 MHz, CDCl3/TMS): δ = 25.9,
30.9, 42.4, 119.0, 122.2, 126.0, 127.1, 134.5. MS (EI): m/z = 175 [M+].
Anal. Calcd for C10H9NS: C, 68.53; H, 5.18;
N, 7.99. Found: 68.21; H, 5.43; N, 8.34.
Product 4 (entry 6, EWG = CN,
Ar = 4-MeOC6H4):
white solid; yield 88%; mp 51-52 ˚C. ¹H
NMR (400 MHz, CDCl3/TMS): δ = 3.22
(dd,1 H, J = 2.8,
11.6 Hz), 3.56 (dd, 1 H, J = 7.6,
11.6 Hz), 3.64 (s, 3 H), 4.13 (ddd, 1 H, J = 2.8,
7.6, 8.8 Hz), 4.52 (d, 1 H, J = 8.8
Hz), 7.37-7.79 (m, 4 H). ¹³C NMR
(100 MHz, CDCl3/TMS): δ = 25.8,
30.6, 42.6, 119.0, 122.3, 126.2, 127.0, 134.3, 156.0 MS (EI): m/z = 205 [M+]. Anal.
Calcd for C11H11NOS: C, 64.36; H, 5.40; N,
6.82. Found: C, 64.74; H, 5.70; N, 7.15
Product 4 (entry 7, EWG = COOMe,
Ar = Ph).²8 white
solid; yield 86%; mp 38-39 ˚C. ¹H
NMR (400 MHz, CDCl3/TMS): δ = 3.24
(dd, 1 H, J = 2.9,
11.5 Hz), 3.58 (dd, 1 H, J = 7.7, 11.5
Hz), 3.84 (s, 3 H), 4.14 (ddd, 1 H, J = 2.9,
7.7, 8.9 Hz), 4.54 (d, 1 H, J = 8.9
Hz), 7.38-7.80 (m, 5 H); there are differences between
the spectral data of compounds 4 (enteries
1 and 7) in this paper and the reference paper (ref. 28). ¹³C
NMR (100 MHz, CDCl3/TMS): δ = 25.8,
45.0, 49.2, 53.0, 126.0, 127.1, 128.9, 137.5, 170.1. MS (EI): m/z = 208 [M+].
Anal. Calcd for C11H12O2S: C, 63.43;
H, 5.81. Found: C, 63.80; H, 5.48.
Product 4 (entry
12, EWG = COOMe, Ar = 4-MeOC6H4): white
solid; yield 85%; mp 42-43 ˚C. ¹H
NMR (400 MHz, CDCl3/TMS): δ = 3.26
(dd, 1 H, J = 2.9,
11.5 Hz), 3.59 (dd, 1 H, J = 7.7,
11. 5 Hz), 3.70 (s, 3 H), 3.86 (s, 3 H), 4.15 (ddd, 1 H, J = 2.9, 7.7,
8.9 Hz), 4.53 (d, 1 H, J = 8.9
Hz), 7.39-7.89 (m, 4 H). ¹³C
NMR (100 MHz, CDCl3/TMS): δ = 25.7, 45.3,
49.1, 53.2, 126.1, 127.0, 128.7, 137.5, 156.9, 170.2. MS (EI): m/z = 238 [M+].
Anal. Calcd for C12H14O3S: C, 60.48;
H, 5.92.Found: C, 60.72; H, 6.24.