Subscribe to RSS
DOI: 10.1055/s-0028-1088135
ZnO Nanoparticles as an Efficient Catalyst for the One-Pot Synthesis of α-Amino Phosphonates
Publication History
Publication Date:
08 April 2009 (online)
Abstract
Zinc oxide nanoparticles (ZnO NPs, ca. 22 nm) were used as an effective catalyst in the solvent-free, three-component couplings of aldehydes, aromatic amines and dialkyl phosphites at room temperature to produce various α-amino phosphonates. Compared to known methods, satisfactory results were obtained with high yields through a simple experimental procedure. The catalyst was recycled and reused five times with minor decrease in its catalytic activity.
Key words
ZnO nanoparticles - α-amino phosphonates - heterogeneous catalyst - solvent-free - three-component reaction
- 1
Yamaguchi A.Uejo F.Yoda T.Uchida T.Tanamura Y.Yamashita T.Teramae N. Nat. Mater. 2004, 3: 337 - 2
Claus P.Mohr AC.Hofmeister H. J. Am. Chem. Soc. 2000, 122: 11430 - 3
Kidwai M.Bansal V.Mirsha NK.Kumar A.Mozumdar S. Synlett 2007, 1581 - 4
Parida KM.Dash SS.Das DP. J. Colloid Interface Sci. 2006, 298: 787 - 5
Roucoux A.Schulz J.Patin H. Chem. Rev. 2002, 102: 3757 - 6
Hernández-Santos D.González-García MB.García AC. Electroanal. 2002, 14: 1225 - 7
Widegren JA.Finke RG. J. Mol. Catal. A: Chem. 2003, 191: 187 - 8
Hosseini-Sarvari M.Etemad S. Tetrahedron 2008, 64: 5519 - 9
Hosseini-Sarvari M.Sharghi H.Etemad S. Helv. Chim. Acta 2008, 91: 715 - 10
Mirjafary Z.Saeidian H.Sadeghi A.Matloubi Moghaddam F. Catal. Commun. 2008, 9: 299 - 11
Wang J.Jiang Z.Zhang Z.Xie Y.Wang X.Xing Z.Xu R.Zhang X. Ultrason. Sonochem. 2008, 15: 768 - 12
Birum GH. J. Org. Chem. 1974, 39: 209 - 13
Fields SC. Tetrahedron 1999, 55: 12237 - 14
Barder A. Aldrichim. Acta 1988, 21: 15 - 15
Shuman CF.Vrang L.Danielson UH. J. Med. Chem. 2004, 47: 5953 - 16
Pierce AC.Rao G.Bemis GW. J. Med. Chem. 2004, 47: 2768 - 17
Maier L.Diel PJ. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 57: 57 - 18
Allen JG.Atherton FR.Hall MJ.Hasall CH.Holmes SW.Lambert RW.Nisbet LJ.Ringrose PS. Nature (London) 1978, 272: 56 - 19
Kabachnik MJ.Medved T. Izv. Akad. Nauk SSSR, Ser. Khim. 1953, 1126 - 20
Fields EK. J. Am. Chem. Soc. 1952, 74: 1528 - 21
Heydari A.Karimian A.Ipaktschi J. Tetrahedron Lett. 1998, 39: 6729 - 22
Azizi N.Saidi MR. Eur. J. Org. Chem. 2003, 4630 - 23
Laschat S.Kunz H. Synthesis 1992, 90 - 24
Ranu BC.Hajra A.Jana U. Org. Lett. 1999, 1: 1141 - 25
Hosseini-Sarvari M. Tetrahedron 2008, 64: 5459 - 26
Manabe K.Kobayashi S. Chem. Commun. 2000, 669 - 27
Reddy YT.Reddy PN.Kumar BS.Rajput P.Sreenivasulu N.Rajitha B. Phosphorus, Sulfur Silicon Relat. Elem. 2007, 182: 161 - 28
Chandrasekhar S.Prakash SJ.Jagadeshwar V.Narsihmulu C. Tetrahedron Lett. 2001, 42: 5561 - 29
Akiyama T.Sanada M.Fuchibe K. Synlett 2003, 1463 - 30
Heydari A.Arefi A. Catal. Commun. 2007, 8: 1023 - 31
Lee S.Park JH.Kang J.Lee JK. Chem. Commun. 2001, 1698 - 32
Bhagat S.Chakraborty AK. J. Org. Chem. 2007, 72: 1263 - 33
Gröger H.Hammer B. Chem. Eur. J. 2000, 6: 943 - 34
Merino P.Marqués-López E.Herrera RP. Adv. Synth. Catal. 2008, 350: 1195 -
35a
Zhu Y.Zhou Y. Appl. Phys. A 2008, 92: 275 -
35b
Under solid-state reaction conditions, Zn(MeCOO)2˙2H2O (0.01 mol, 2.19 g) was ground for 5 min and then mixed with NaOH (0.04 mol, 1.60 g). After the mixture was ground for 30 min, the product was washed with deionized H2O (3 ×) and EtOH to remove the by-products. The final product was first dried at 80 ˚C for 1 h and then was calcined in air at 600 ˚C for 2 h to decompose Zn(OH)2 into ZnO and H2O.
- 36
Cullity BD.Stock SR. Elements of X-ray Diffraction 3rd ed.: Prentice-Hall; Englewood Cliffs NJ: 2001. - 38
Elmakssoudi A.Zahouily M.Mezdar A.Rayadh A.Sebti S. C. R. Chimie 2005, 8: 1954 - 39
Bhattacharya AK.Kalpeshkumar CR. Tetrahedron Lett. 2008, 49: 2598 - 40
Kaboudin B.Sorbiun M. Tetrahedron Lett. 2007, 48: 9015
References and Notes
General Procedure
for the Synthesis of α-Amino Phosphonate Derivatives:
ZnO nanoparticles (20% mol) were added to a mixture of
aldehyde (1 mmol), amine (1 mmol) and dialkyl phosphite (1 mmol),
at r.t., followed
by 8-18 h of stirring. The
progress of the reaction was monitored by TLC (eluent: EtOAc-n-hexane, 30:70). After the reaction
completion, CH2Cl2 (10 mL) was added to the reaction
mixture and the mixture was centrifuged at 2000-3000 rpm,
at 10 ˚C for 5 min to remove the catalyst. Evaporation
of the reaction solvent, followed by column chromatography, afforded
the pure α-amino phosphonates. Spectral data for selected
products, 4b: white solid; mp 89-90 ˚C. ¹H
NMR (500 MHz, CDCl3): δ = 1.14 (t, ³
J = 7.0 Hz, 3 H), 1.29 (t, ³
J = 7.1 Hz, 3 H), 3.66-3.68
(m, 1 H), 3.90-3.93 (m, 1 H), 4.11-4.12 (m, 2
H), 4.79 (d, ²
J
HP = 24.3
Hz, 1 H), 4.81 (br, 1 H), 6.58-6.67 (m, 3 H), 7.07-7.08
(m, 2 H), 7.29-7.31 (m, 3 H), 7.45-7.46 (m, 2
H). ¹³C NMR (125 MHz, CDCl3): δ = 16.12
(d, ³
J
PC = 5.6
Hz, Me), 16.26 (d, ³
J
PC = 5.7
Hz, Me), 56.71 (d, ¹
J
PC = 151.3
Hz, CH), 63.21 (d, ²
J
PC = 7.0
Hz, OCH2), 63.97 (d, ²
J
PC = 6.9 Hz, OCH2),
114.28 (CH), 117.27 (CH), 127.34 (d, ³
J
PC = 5.6 Hz, CH),
128.51 (d, 4
J
PC = 2.9
Hz, CH), 128.84 (CH), 130.04 (CH), 134.11 (C), 146.73 (d, ³
J
PC = 14.3 Hz, C). 4d: white solid; mp 59-60 ˚C. ¹H
NMR (500 MHz, CDCl3): δ = 1.15 (t, ³
J = 6.9 Hz, 3 H), 1.28 (t, ³
J = 7.0 Hz, 3 H), 3.71-3.74
(m, 1 H), 3.79-3.83 (m, 1 H), 4.06-4.10 (m, 2
H), 4.79 (d, ²
J
HP = 24.3
Hz, 1 H), 4.88 (br, 1 H), 6.49 (d, ³
J = 7.6 Hz, 2 H), 6.73 (t, ³
J = 7.2 Hz, 1 H), 7.07 (t, ³
J = 7.4 Hz, 2 H), 7.33 (dd, ³
J = 2.3, 8.0 Hz, 2 H), 7.43
(d, ³
J = 8.0
Hz, 2 H). ¹³C NMR (125 MHz, CDCl3): δ = 16.44
(d, ³
J
PC = 5.5
Hz, Me), 16.61 (d, ³
J
PC = 5.6
Hz, Me), 63.05 (d, ²
J
PC = 7.1
Hz, OCH2), 63.27 (d, ²
J
PC = 6.9 Hz, OCH2),
63.65 (d, ¹
J
PC = 151.1
Hz, CH), 116.09 (CH), 116.89 (CH), 128.27 (d, 4
J
PC = 2.6 Hz, CH),
128.46 (CH), 130.63 (C), 131.03 (d, ³
J
PC = 5.9 Hz, CH),
135.43 (C), 147.29 (d, ³
J
PC = 14.3
Hz, C). 4h: white solid; mp 60 ˚C. ¹H
NMR (500 MHz, CDCl3): δ = 1.13 (t, ³
J = 7.0 Hz, 3 H), 1.28 (t, ³
J = 7.0 Hz, 3 H), 2.30 (s, 3
H), 3.68-3.70 (m, 1 H), 3.92-3.94 (m, 1 H), 4.08-4.13
(m, 2 H), 4.73 (d, ²
J
HP = 24.1
Hz, 1 H), 4.96 (br, 1 H), 6.69 (d, ³
J = 7.5 Hz, 2 H), 6.65-6.69
(m, 1 H), 7.07-7.13 (m, 4 H), 7.31-7.34 (m, 2
H). ¹³C NMR (125 MHz, CDCl3): δ = 16.45
(d, ³
J
PC = 5.5
Hz, Me), 16.63 (d, ³
J
PC = 5.6
Hz, Me), 20.79 (Me), 58.65 (d, ¹
J
PC = 151.7 Hz, CH),
63.43 (d, ²
J
PC = 7.0
Hz, OCH2), 63.97 (d, ²
J
PC = 6.9 Hz, OCH2),
115.08 (CH), 118.19 (CH), 128.04 (d, 4
J
PC = 2.9
Hz, CH), 128.93 (d, ³
J
PC = 5.7
Hz, CH), 128.84 (CH), 132.52 (C), 137.36 (C), 146.73 (d, ³
J
PC = 14.1 Hz, C). 4q: white solid; mp 117-119 ˚C. ¹H
NMR (500 MHz, CDCl3): δ = 1.11 (t, J = 7.0 Hz, 3 H), 1.25 (t, J = 7.0 Hz, 3 H), 3.41 (s, 3
H), 3.43 (s, 3 H), 3.59-3.64 (m, 1 H), 3.81-3.85
(m, 1 H), 4.00-4.08 (m, 2 H), 4.61 (d, ²
J
HP = 24.4 Hz, 1
H), 4.78 (br, 1 H), 6.50 (d, ³
J = 7.6
Hz, 2 H), 6.63 (d, ³
J = 7.2
Hz, 2 H), 6.91 (d, ³
J = 8.4
Hz, 2 H), 7.23 (d, ³
J = 8.5
Hz, 2 H). 4r: white solid; mp 106-108 ˚C. ¹H
NMR (500 MHz, CDCl3): δ = 1.12 (t,
J = 7.1 Hz, 3 H), 1.21 (t, J = 7.1 Hz, 3 H), 3.53 (s, 3
H), 3.52-3.54 (m, 1 H), 3.58-3.69 (m, 1 H), 3.88-3.93
(m, 2 H), 4.45 (d, ²
J
HP = 23.9
Hz, 1 H), 4.65 (br, 1 H), 6.26 (d, ³
J = 8.4 Hz, 2 H), 6.64 (d, ³
J = 8.3 Hz, 2 H), 6.91 (d, ³
J = 8.6 Hz, 2 H), 7.11 (d, ³
J = 8.6 Hz, 2 H).