Planta Med 2009; 75(1): 94-98
DOI: 10.1055/s-0028-1088365
Biochemistry, Molecular Biology and Biotechnology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Genetic Variation in Wild and Cultivated Rhizoma Corydalis Revealed by ISSRs Markers

Ying-Xiong Qiu1 , Min Zong1 , Yu Yao1 , Bin-Long Chen2 , Xiao-Long Zhou2 , Zi-Lin Chen3 , Cheng-Xin Fu1
  • 1Laboratory of Systematic and Evolutionary Botany, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
  • 2Institute of Chinese Medicine, Panan County, Zhejiang Province, Panan, China
  • 3Management Bureau of Panan National Nature Conservative Area, Zhejiang Province, Panan, China
Further Information

Publication History

Received: April 6, 2008 Revised: August 4, 2008

Accepted: September 12, 2008

Publication Date:
25 November 2008 (online)

Abstract

Rhizoma Corydalis is an important Chinese medicinal herb. In this paper, we employed ISSR data to explore the genetic variation in domesticated populations and wild populations of the species. The average of within-population ISSR diversity in cultivated populations (PPF = 25.32 %, Hpop = 0.094) was lower than that in wild populations (PPF = 47.70 %, Hpop = 0.144). Cultivated populations (Φ ST = 0.515, G ST = 0.429) have a greater proportion of their genetic variability distributed among populations than wild populations (Φ ST = 0.277, G ST = 0.226). Based on hierarchical estimates of variance components, significant statistical differences (57.77 %, P < 0.001) were found between the wild and cultivated groups. The low levels of genetic diversity within cultivated populations and high levels of genetic differentiation among populations/groups may result from artificial selection, the mode of clonal propagation, and only limited exchange of material among localities. Finally, some suggestions for conservation and efficient management of the genetic resources of this important medicinal herb are proposed.

Abbreviations

G ST:Nei’s coefficient of population differentiation

Hpop:Nei’s expected heterozygosity

PPF:percentage of polymorphic fragments

Φ ST:genetic differentiation estimated by AMOVA

References

  • 1 Hoisington D, Khairallah M, Reeves T, Ribaut J M, Skovmand B, Taba S. et al . Plant genetic resources: what can they contribute toward increased crop productivity?.  Proc Natl Acad Sci USA. 1999;  96 5937-43
  • 2 Manifesto M M, Schlatter A S, Hopp H E, Suarez E Y, Dubcovky J. Quantitative evaluation of genetic diversity germplasm using molecular markers.  Crop Sci. 2001;  41 682-90
  • 3 Xu X H, Yu G D, Wang Z T. Resource investigation and quality evaluation on wild Corydalis yanhusuo. .  China J Chin Mater Med. 2004;  29 339-401
  • 4 Tang W, Eisenbrand G. Corydalis turtschaninovii Bess. f. yanhusuo Y.H. Chou et C.C. Hsü. In: Tang W, Eisenbrand G, editors. Chinese drugs of plant origin: chemistry, pharmacology, and use in traditional and modern medicine.  Heidelberg:. Springer-Verlag;  1992 377-93
  • 5 Li S Z. Compendium of Materia Medica (Ming Dynasty), Vol. 1. Beijing: People’s Medical Publishing House; 1982: 803
  • 6 Doyle J J. DNA protocols for plants - CTAB total DNA isolation. In: Hewitt GM, Johnston A, editors. Molecular Ttchniques in taxonomy. Heidelberg: Springer-Verlag; 1991: 283-93
  • 7 Nei M. Analysis of gene diversity in subdivided populations.  Proc Natl Acad Sci USA. 1973;  70 3321-3
  • 8 Holsinger K E, Lewis P O, Dey D K. A Bayesian approach to inferring population structure from dominant markers.  Mol Ecol. 2002;  11 1157-64
  • 9 Yeh F C, Yang R C, Boyle T BJ, Ye Z H, Mao J X. POPGENE, the user-friendly shareware for population genetic analysis. Available at http://www.ualberta.ca/∼fyeh Accessed 1997
  • 10 Holsinger K E, Lewis P O. Hickory: a package for analysis of population genetic data V1.0. Available at http://www.eeb.uconn.edu Accessed 2003
  • 11 Miller M P. AMOVA-PREP 1.01: a program for the preparation of AMOVA input files from dominant-markers raw data. Flagstaff; Department of Biological Sciences, Northern Arizona University 1998
  • 12 Excoffier L, Smouse P E, Quattro J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data.  Genetics. 1992;  131 479-91
  • 13 Kovach W L. MVSP – a multivariate statistical package for Windows, version 3.1. Wales; Kovach Computing Services 1999
  • 14 Qiu Y X, Hong D Y, Fu C X, Cameron K M. Genetic variation in the endangered and endemic species Changium smyrnioides (Apiaceae).  Biochem Syst Ecol. 2004;  32 583-96
  • 15 Qiu Y X, Li J H, Liu H L, Chen Y Y, Fu C X. Population structure and genetic diversity of Dysosma versipellis (Berberidaceae), a rare endemic from China.  Biochem Syst Ecol. 2006;  34 745-52
  • 16 Zong M, Liu H L, Qiu Y X, Yang S Z, Zhao M S, Fu C X. Genetic diversity and geographic differentiation in the threatened species Dysosma pleiantha in China as revealed by ISSR analysis.  Biochem Genet. 2008;  46 180-96
  • 17 Xiao M, Li Q, Wang L, Guo L, Li J, Tang L. et al . ISSR analysis of the genetic diversity of the endangered species Sinopodophyllum hexandrum (Royle) Ying from Western Sichuan Province, China.  J Integr Plant Biol. 2006;  48 1140-46
  • 18 Nybom H, Bartish I V. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants.  Perspect Plant Ecol Evol Syst. 2000;  3 93-114
  • 19 Hamrick J L, Godt M JW. Allozyme diversity in plant species. In: Brown ADH, Clegg MT, Kahler AL, Weir BS, editors. Plant population genetics, breeding, and genetic resources.  Sunderland, MA:. Sinauer;  1990 43-63
  • 20 Hamrick J, Godt M JW. Effects of life history traits on genetic diversity in plant species.  Philos Trans R Soc Lond B Biol Sci. 1996;  351 1291-8.
  • 21 Maloof J E. Reproductive biology of a North American subalpine plant: Corydalis caseana A. Gray ssp. brandegei (S. Watson) G. B. Ownbey.  Plant Species Biol. 2000;  15 281-8
  • 22 Old K M, Moran G F, Bell J C. Isozyme variability among isolates of Phytophthora cinnamoni from Australia and Papua New Guinea.  Can J Bot. 1984;  62 2016-22
  • 23 Abbo S, Berger J, Turner N C. Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation.  Funct Plant Biol. 2003;  30 1081-7
  • 24 Gao Q, Li G, Wan Z, Yang K, Cheng X, Tang J. et al . Preliminary infection source of downy mildew of Corydalis yanhusuo W.T. Wang.  China J Chin Mater Med. 1991;  16 211-3

Prof. Cheng-Xin Fu

Laboratory of Systematic and Evolutionary Botany

Department of Biology

College of Life Sciences

Zhejiang University

Hangzhou 310058

People′s Republic of China

Phone: +86-571-8820-6607

Fax: +86-571-8643-2273

Email: cxfu@zju.edu.cn