Abstract
Rhizoma Corydalis is an important Chinese medicinal herb. In this paper, we employed
ISSR data to explore the genetic variation in domesticated populations and wild populations
of the species. The average of within-population ISSR diversity in cultivated populations
(PPF = 25.32 %, H pop = 0.094) was lower than that in wild populations (PPF = 47.70 %, H pop = 0.144). Cultivated populations (Φ
ST = 0.515, G
ST = 0.429) have a greater proportion of their genetic variability distributed among
populations than wild populations (Φ
ST = 0.277, G
ST = 0.226). Based on hierarchical estimates of variance components, significant statistical
differences (57.77 %, P < 0.001) were found between the wild and cultivated groups. The low levels of genetic
diversity within cultivated populations and high levels of genetic differentiation
among populations/groups may result from artificial selection, the mode of clonal
propagation, and only limited exchange of material among localities. Finally, some
suggestions for conservation and efficient management of the genetic resources of
this important medicinal herb are proposed.
Abbreviations
G
ST :Nei’s coefficient of population differentiation
H pop:Nei’s expected heterozygosity
PPF :percentage of polymorphic fragments
Φ
ST :genetic differentiation estimated by AMOVA
Key words
Corydalis yanhusuo
- Fumariaceae - traditional Chinese medicine - cultivated populations - wild populations
- genetic variation - ISSR
References
1
Hoisington D, Khairallah M, Reeves T, Ribaut J M, Skovmand B, Taba S. et al .
Plant genetic resources: what can they contribute toward increased crop productivity?.
Proc Natl Acad Sci USA.
1999;
96
5937-43
2
Manifesto M M, Schlatter A S, Hopp H E, Suarez E Y, Dubcovky J.
Quantitative evaluation of genetic diversity germplasm using molecular markers.
Crop Sci.
2001;
41
682-90
3
Xu X H, Yu G D, Wang Z T.
Resource investigation and quality evaluation on wild Corydalis yanhusuo.
.
China J Chin Mater Med.
2004;
29
339-401
4
Tang W, Eisenbrand G.
Corydalis turtschaninovii Bess. f. yanhusuo Y.H. Chou et C.C. Hsü. In: Tang W, Eisenbrand G, editors. Chinese drugs of plant
origin: chemistry, pharmacology, and use in traditional and modern medicine.
Heidelberg:.
Springer-Verlag;
1992
377-93
5 Li S Z. Compendium of Materia Medica (Ming Dynasty), Vol. 1. Beijing: People’s Medical
Publishing House; 1982: 803
6 Doyle J J. DNA protocols for plants - CTAB total DNA isolation. In: Hewitt GM, Johnston
A, editors. Molecular Ttchniques in taxonomy. Heidelberg: Springer-Verlag; 1991: 283-93
7
Nei M.
Analysis of gene diversity in subdivided populations.
Proc Natl Acad Sci USA.
1973;
70
3321-3
8
Holsinger K E, Lewis P O, Dey D K.
A Bayesian approach to inferring population structure from dominant markers.
Mol Ecol.
2002;
11
1157-64
9 Yeh F C, Yang R C, Boyle T BJ, Ye Z H, Mao J X. POPGENE, the user-friendly shareware
for population genetic analysis. Available at http://www.ualberta.ca/∼fyeh Accessed
1997
10 Holsinger K E, Lewis P O. Hickory: a package for analysis of population genetic
data V1.0. Available at http://www.eeb.uconn.edu Accessed 2003
11 Miller M P. AMOVA-PREP 1.01: a program for the preparation of AMOVA input files
from dominant-markers raw data. Flagstaff; Department of Biological Sciences, Northern
Arizona University 1998
12
Excoffier L, Smouse P E, Quattro J M.
Analysis of molecular variance inferred from metric distances among DNA haplotypes:
applications to human mitochondrial DNA restriction data.
Genetics.
1992;
131
479-91
13 Kovach W L. MVSP – a multivariate statistical package for Windows, version 3.1. Wales;
Kovach Computing Services 1999
14
Qiu Y X, Hong D Y, Fu C X, Cameron K M.
Genetic variation in the endangered and endemic species Changium smyrnioides (Apiaceae).
Biochem Syst Ecol.
2004;
32
583-96
15
Qiu Y X, Li J H, Liu H L, Chen Y Y, Fu C X.
Population structure and genetic diversity of Dysosma versipellis (Berberidaceae), a rare endemic from China.
Biochem Syst Ecol.
2006;
34
745-52
16
Zong M, Liu H L, Qiu Y X, Yang S Z, Zhao M S, Fu C X.
Genetic diversity and geographic differentiation in the threatened species Dysosma pleiantha in China as revealed by ISSR analysis.
Biochem Genet.
2008;
46
180-96
17
Xiao M, Li Q, Wang L, Guo L, Li J, Tang L. et al .
ISSR analysis of the genetic diversity of the endangered species Sinopodophyllum hexandrum (Royle) Ying from Western Sichuan Province, China.
J Integr Plant Biol.
2006;
48
1140-46
18
Nybom H, Bartish I V.
Effects of life history traits and sampling strategies on genetic diversity estimates
obtained with RAPD markers in plants.
Perspect Plant Ecol Evol Syst.
2000;
3
93-114
19
Hamrick J L, Godt M JW.
Allozyme diversity in plant species. In: Brown ADH, Clegg MT, Kahler AL, Weir BS,
editors. Plant population genetics, breeding, and genetic resources.
Sunderland, MA:.
Sinauer;
1990
43-63
20
Hamrick J, Godt M JW.
Effects of life history traits on genetic diversity in plant species.
Philos Trans R Soc Lond B Biol Sci.
1996;
351
1291-8.
21
Maloof J E.
Reproductive biology of a North American subalpine plant: Corydalis caseana A. Gray ssp. brandegei (S. Watson) G. B. Ownbey.
Plant Species Biol.
2000;
15
281-8
22
Old K M, Moran G F, Bell J C.
Isozyme variability among isolates of Phytophthora cinnamoni from Australia and Papua New Guinea.
Can J Bot.
1984;
62
2016-22
23
Abbo S, Berger J, Turner N C.
Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation.
Funct Plant Biol.
2003;
30
1081-7
24
Gao Q, Li G, Wan Z, Yang K, Cheng X, Tang J. et al .
Preliminary infection source of downy mildew of Corydalis yanhusuo W.T. Wang.
China J Chin Mater Med.
1991;
16
211-3
Prof. Cheng-Xin Fu
Laboratory of Systematic and Evolutionary Botany
Department of Biology
College of Life Sciences
Zhejiang University
Hangzhou 310058
People′s Republic of China
Telefon: +86-571-8820-6607
Fax: +86-571-8643-2273
eMail: cxfu@zju.edu.cn