Semin Neurol 2008; 28(5): 703-715
DOI: 10.1055/s-0028-1105973
© Thieme Medical Publishers

Neurological Complications of Cardiac Surgery

Rebecca F. Gottesman1 , Guy M. McKhann1 , Charles W. Hogue2
  • 1Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
  • 2Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
Further Information

Publication History

Publication Date:
29 December 2008 (online)

ABSTRACT

Neurological injury resulting from cardiac surgery has a range of manifestations from focal neurological deficit to encephalopathy or coma. As the safety of drug-eluting stents comes into question, more patients will likely undergo coronary artery bypass graft surgery. These projections, along with the growing proportions of elderly patients and those with comorbidities, portend the potential for rising rates of perioperative neurological complications. The risk for neurological injury may be determined by the type of procedure, by patient-specific characteristics, and by the extent of cerebral embolization and hypoperfusion during and after surgery. Changes in surgical techniques, including the use of off-pump surgery, have not decreased rates of brain injury from cardiac surgery. When appropriate, modern neuroimaging techniques should be used in postoperative patients to confirm diagnosis, to provide information on potential etiology, to direct appropriate therapy, and to help in prognostication. Management of postoperative medications and early use of rehabilitation services is a recommended strategy to optimize the recovery for individuals with neurological injury after cardiac surgery.

REFERENCES

  • 1 McKhann G M, Goldsborough M A, Borowicz L M et al.. Predictors of stroke risk in coronary artery bypass patients.  Ann Thorac Surg. 1997;  63 516-521
  • 2 Kornfeld D S, Heller S S, Frank K A, Edie R N, Barsa J. Delirium after coronary artery bypass surgery.  J Thorac Cardiovasc Surg. 1978;  76(1) 93-96
  • 3 Roach G W, Kanchuger M, Mangano C M et al.. Adverse cerebral outcomes after coronary bypass surgery.  N Engl J Med. 1996;  335(25) 1857-1863
  • 4 Ferguson T B, Hammill B G, Peterson E D, DeLong E R, Grover F L. A decade of change–Risk profiles and outcomes for isolated coronary artery bypass grafting procedures, 1990–1999: A report from the STS National Database Committee and the Duke Clinical Research Institute.  Ann Thorac Surg. 2002;  73 480-490
  • 5 Jeremias A, Kirtane A. Balancing efficacy and safety of drug-eluting stents in patients undergoing percutaneous coronary intervention.  Ann Intern Med. 2008;  148(3) 234-238
  • 6 Stettler C, Wandel S, Allemann S et al.. Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis.  Lancet. 2007;  370(9591) 937-948
  • 7 Hannan E L, Wu C, Walford G et al.. Drug-eluting stent vs. coronary-artery bypass grafting in multivessel coronary disease.  N Engl J Med. 2008;  358 331-341
  • 8 Breuer A C, Furlan A J, Hanson M R et al.. Central nervous system complications of coronary artery bypass graft surgery: Prospective analysis of 421 patients.  Stroke. 1983;  14(5) 682-687
  • 9 Coffey C E, Massey E W, Roberts K B, Curtis S, Jones R H, Pryor D B. Natural history of cerebral complications of coronary artery bypass graft surgery.  Neurology. 1983;  33 1416-1421
  • 10 McKhann G M, Grega M A, Borowicz Jr L M, Baumgartner W A, Selnes O A. Stroke and encephalopathy after cardiac surgery. An update.  Stroke. 2006;  37 562-571
  • 11 Boeken U, Litmathe J, Feindt P, Gams E. Neurological complications after cardiac surgery: Risk factors and correlation to the surgical procedure.  Thorac Cardiovasc Surg. 2005;  53 33-36
  • 12 Roselli E E, Pettersson G B, Blackstone E H et al.. Adverse events during reoperative cardiac surgery: Frequency, characterization, and rescue.  J Thorac Cardiovasc Surg. 2008;  135(2) 316-323
  • 13 Floyd T F, Shah P N, Price C C et al.. Clinically silent cerebral ischemic events after cardiac surgery: their incidence, regional vascular occurrence, and procedural dependence.  Ann Thorac Surg. 2006;  81(6) 2160-2166
  • 14 Bendszus M, Reents W, Franke D et al.. Brain damage after coronary artery bypass grafting.  Arch Neurol. 2002;  59 1090-1095
  • 15 Djaiani G, Fedorko L, Borger M et al.. Mild to moderate atheromatous disease of the thoracic aorta and new ischemic brain lesions after conventional coronary artery bypass graft surgery.  Stroke. 2004;  35(9) e356-358
  • 16 Knipp S C, Matatko N, Wilhelm H et al.. Evaluation of brain injury after coronary artery bypass grafting: A prospective study using neuropsychological assessment and diffusion-weighted magnetic resonance imaging.  Eur J Cardiothorac Surg. 2004;  25 791-800
  • 17 Czerny M, Fleck T, Zimpfer D et al.. Risk factors of mortality and permanent neurologic injury in patients undergoing ascending aortic and arch repair.  J Thorac Cardiovasc Surg. 2003;  126(5) 1296-1301
  • 18 Ergin M A, Galla J D, Lansman L, Quintana C, Bodian C, Griepp R B. Hypothermic circulatory arrest in operations on the thoracic aorta. Determinants of operative mortality and neurologic outcome.  J Thorac Cardiovasc Surg. 1994;  107(3) 788-797
  • 19 Harrington D K, Fragomeni F, Bonser R S. Cerebral perfusion.  Ann Thorac Surg. 2007;  83(2) S799-S804
  • 20 Bakhtiary F, Dogan S, Zierer A et al.. Antegrade cerebral perfusion for acute type A aortic dissection in 120 consecutive patients.  Ann Thorac Surg. 2008;  85(2) 465-469
  • 21 Kazui T, Washiyama N, Muhammed B AH, Terada H, Yamashita K, Takinami M. Improved results of atherosclerotic arch aneurysm operations with a refined technique.  J Thorac Cardiovasc Surg. 2001;  121 491-499
  • 22 Di Eusanio M, Schepens M, Morshuis W J et al.. Brain protection using antegrade selective cerebral perfusion: a multicenter study.  Ann Thorac Surg. 2003;  76(4) 1181-1189
  • 23 Johnsson P, Algotsson L, Ryding E, Stahl E, Messeter K. Cardiopulmonary perfusion and cerebral blood flow in bilateral carotid artery disease.  Ann Thorac Surg. 1991;  51 579-584
  • 24 Lazar H L, Menzoian J O. Coronary artery bypass grafting in patients with cerebrovascular disease.  Ann Thorac Surg. 1998;  66 968-974
  • 25 Cook D J, Huston III T MR, Brown R D, Zehr K J, Sundt III T M. Postcardiac surgical cognitive impairment in the aged using diffusion-weighted magnetic resonance imaging.  Ann Thorac Surg. 2007;  83(4) 1389-1395
  • 26 Barber P A, Hach S, Tippett L J, Ross L, Merry A F, Milsom P. Cerebral ischemic lesions on diffusion-weighted imaging are associated with neurocognitive; decline after cardiac surgery.  Stroke. 2008;  39 1427-1433 , Epub ahead of print
  • 27 Brener B J, Brief D K, Alpert J et al.. A four-year experience with preoperative noninvasive carotid evaluation of two thousand twenty-six patients undergoing cardiac surgery.  J Vasc Surg. 1984;  1(2) 326-338
  • 28 Durand D J, Perler B A, Roseborough G S et al.. Mandatory versus selective preoperative carotid screening: a retrospective analysis.  Ann Thorac Surg. 2004;  78(1) 159-166
  • 29 Ferris A, Robertson R M, Fabunmi R, Mosca L. American Heart Association and American Stroke Association national survey of stroke risk awareness among women.  Circulation. 2005;  111 1321-1326
  • 30 Van der Heyden J, Suttorp M J, Bal E T et al.. Staged carotid angioplasty and stenting followed by cardiac surgery in patients with severe asymptomatic carotid artery stenosis.  Circulation. 2007;  116 2036-2042
  • 31 Takeuchi K, Maida K, Yoshida S et al.. Preoperative cerebrovascular screening before cardiovascular surgery in a high risk area of cerebrovascular events in Japan.  J Cardiovasc Surg (Torino). 2000;  41(6) 911-914
  • 32 Nakamura Y, Kawachi K, Imagawa H et al.. The prevalence and severity of cerebrovascular disease in patients undergoing cardiovascular surgery.  Ann Thorac Cardiovasc Surg. 2004;  10(2) 81-84
  • 33 Bybee K A, Powell B D, Valeti U et al.. Preoperative aspirin therapy is associated with improved postoperative outcomes in patients undergoing coronary artery bypass grafting.  Circulation. 2005;  112(9, Suppl) I286-I292
  • 34 McKhann G M, Grega M A, Borowicz L M et al.. Encephalopathy and stroke after coronary artery bypass grafting: incidence, consequences, and prediction.  Arch Neurol. 2002;  59 1422-1428
  • 35 Hogue C W, Murphy S F, Schechtman K B, Davila-Roman V G. Risk factors for early or delayed stroke after cardiac surgery.  Circulation. 1999;  100(6) 642-647
  • 36 Hogue C W, Barzilai B, Pieper K S et al.. Sex differences in neurological outcomes and mortality after cardiac surgery.  Circulation. 2001;  103 2133-2137
  • 37 Blauth C I, Cosgrove D M, Webb B W et al.. Atheroembolism from the ascending aorta. An emerging problem in cardiac surgery.  J Thorac Cardiovasc Surg. 1992;  103(6) 1104-1111
  • 38 Mackensen G B, Ti L K, Phillips-Bute B G, Mathew J P, Newman M F, Grocott H P. Cerebral embolization during cardiac surgery: impact of aortic atheroma burden.  Br J Anaesth. 2003;  91 656-661
  • 39 Furlan A J, Cracium A R. Risk of stroke during coronary artery bypass graft surgery in patients with internal carotid artery disease documented by angiography.  Stroke. 1985;  16 797-799
  • 40 Schwartz L B, Bridgman A H, Kieffer R W et al.. Asymptomatic carotid artery stenosis and stroke in patients undergoing cardiopulmonary bypass.  J Vasc Surg. 1995;  21 146-153
  • 41 D'Agostino R S, Svensson L G, Neumann D J, Balkhy H H, Williamson W A, Shahian D M. Screening carotid ultrasonography and risk factors for stroke in coronary artery surgery patients.  Ann Thorac Surg. 1996;  62 1714-1723
  • 42 Gerraty R P, Gates P C, Doyle J C. Carotid stenosis and perioperative stroke risk in symptomatic and asymptomatic patients undergoing vascular or coronary surgery.  Stroke. 1993;  24 1115-1118
  • 43 Yoon B W, Bae H J, Kang D W et al.. Intracranial cerebral artery disease as a risk factor for central nervous system complications of coronary artery bypass graft surgery.  Stroke. 2001;  32 94-99
  • 44 Grocott H P, White W D, Morris R W et al.. Genetic polymorphisms and the risk of stroke after cardiac surgery.  Stroke. 2005;  36(9) 1854-1858
  • 45 Tardiff B E, Newman M F, Saunders A M et al.. Preliminary report of a genetic basis for cognitive decline after cardiac operations. The Neurologic Outcome Research Group of the Duke Heart Center.  Ann Thorac Surg. 1997;  64(3) 715-720
  • 46 Steed L, Kong R, Stygall J et al.. The role of apolipoprotein E in cognitive decline after cardiac operation.  Ann Thorac Surg. 2001;  71(3) 823-826
  • 47 Leary M C, Caplan L R. Technology insight: brain MRI and cardiac surgery–detection of postoperative brain ischemia.  Nat Clin Pract Cardiovasc Med. 2007;  , epub ahead of print
  • 48 Gottesman R F, Sherman P M, Grega M A et al.. Watershed strokes after cardiac surgery: Diagnosis, etiology, and outcome.  Stroke. 2006;  37 2306-2311
  • 49 Likosky D S, Marrin C AS, Caplan L R et al.. Determination of etiologic mechanisms of strokes secondary to coronary artery bypass graft surgery.  Stroke. 2003;  34 2830-2834
  • 50 Borger M A, Ivanov J, Weisel R D et al.. Decreasing incidence of stroke during valvular surgery.  Circulation. 1998;  98 II137-II143
  • 51 Karkouti K, Wijeysundera D N, Beattie W S. Risk associated with preoperative anemia in cardiac surgery: a multicenter cohort study.  Circulation. 2008;  117(4) 478-484
  • 52 Habib R H, Zacharias A, Schwann T A, Riordan C J, Durham S J, Shah A. Adverse effects of low hematocrit during cardiopulmonary bypass in the adult: Should current practice be changed?.  J Thorac Cardiovasc Surg. 2003;  125 1438-1450
  • 53 Karkouti K, Djaiani G, Borger M A et al.. Low hematocrit during cardiopulmonary bypass is associated with increased risk of perioperative stroke in cardiac surgery.  Ann Thorac Surg. 2005;  80 1381-1387
  • 54 Karkouti K, Wijeysundera D N, Yau T M, McCluskey S A, van Rensburg A, Beattie W S. The influence of baseline hemoglobin concentration on tolerance of anemia in cardiac surgery.  Transfusion. 2008;  48(4) 666-672 , Epub ahead of print
  • 55 Gilman S. Cerebral disorders after open-heart operations.  N Engl J Med. 1965;  272 489-498
  • 56 Wityk R J, Goldsborough M A, Hillis A E et al.. Diffusion- and perfusion-weighted brain magnetic resonance imaging in patients with neurologic complications after cardiac surgery.  Arch Neurol. 2001;  58 571-576
  • 57 Glassman A H, Bigger Jr J T. Antipsychotic drugs: prolonged QTc interval, torsade de pointes, and sudden death.  Am J Psychiatry. 2001;  158(11) 1774-1782
  • 58 Feeney D M, Gonzalez A, Law W A. Amphetamine, haloperidol and experience interact to affect the rate of recovery after motor cortex injury.  Science. 1982;  217 855-857
  • 59 Llinas R, Barbut D, Caplan L R. Neurologic complications of cardiac surgery.  Prog Cardiovasc Dis. 2000;  43(2) 101-112
  • 60 Rea R S, Battistone S, Fong J J, Devlin J W. Atypical antipsychotics versus haloperidol for treatment of delirium in acutely ill patients.  Pharmacotherapy. 2007;  27(4) 588-594
  • 61 Prakanrattana U, Prapaitrakool S. Efficacy of risperidone for prevention of postoperative delirium in cardiac surgery.  Anaesth Intensive Care. 2007;  35(5) 714-719
  • 62 Wijeysundera D N, Naik J S, Beattie W S. Alpha-2 adrenergic agonists to prevent perioperative cardiovascular complications: A meta-analysis.  Am J Med. 2003;  114 742-752
  • 63 Herr D L, Sum-Ping S T, England M. ICU sedation after coronary artery bypass graft surgery: dexmedetomidine-based versus propofol-based regimens.  J Cardiothorac Vasc Anesth. 2003;  17(5) 576-584
  • 64 Pandharipande P P, Pun B T, Herr D L et al.. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial.  JAMA. 2007;  298(22) 2644-2653
  • 65 Hoffman W E, Kochs E, Werner C, Thomas C, Albrecht R F. Dexmedetomidine improves neurologic outcome from complete ischemia in the rat. Reversal by the alpha 2-adrenergic antagonist atipamezole.  Anesthesiology. 1991;  75(2) 328-332
  • 66 Cosar M, Eser O, Fidan H et al.. The neuroprotective effect of dexmedetomidine in the hippocampus of rabbits after subarachnoid hemorrhage.  Surg Neurol. 2008;  , Epub ahead of print
  • 67 Aantaa R, Jalonen J. Perioperative use of alpha-2-adrenoceptor agonists and the cardiac patient.  Eur J Anaesthesiol. 2006;  23 361-372
  • 68 Shaw P J, Bates D, Cartlidge N E et al.. Neurologic and neuropsychological morbidity following major surgery: comparison of coronary artery bypass and peripheral vascular surgery.  Stroke. 1987;  18(4) 700-707
  • 69 Selnes O A, Grega M A, Borowicz L M, Royall R M, McKhann G M, Baumgartner W A. Cognitive changes with coronary artery disease: a prospective study of coronary artery bypass graft patients and nonsurgical controls.  Ann Thorac Surg. 2003;  75 1377-1386
  • 70 Fearn S J, Pole R, Wesnes K, Faragher E B, Hooper T L, McCollum C N. Cerebral injury during cardiopulmonary bypass: emboli impair memory.  J Thorac Cardiovasc Surg. 2001;  121 1150-1160
  • 71 Monk T G, Weldon B C, Garvan C W et al.. Predictors of cognitive dysfunction after major noncardiac surgery.  Anesthesiology. 2008;  108(1) 18-30
  • 72 Selnes O A, Pham L, Zeger S, McKhann G M. Defining cognitive change after CABG: decline versus normal variability.  Ann Thorac Surg. 2006;  82(2) 388-390
  • 73 Selnes O A, Zeger S L. Coronary artery bypass grafting baseline cognitive assessment: essential not optional.  Ann Thorac Surg. 2007;  83 374-376
  • 74 Sotaniemi K A, Mononen H, Hokkanen T E. Long-term cerebral outcome after open-heart surgery. A five-year neuropsychological follow-up study.  Stroke. 1986;  17(3) 410-416
  • 75 Newman M F, Kirchner J L, Phillips-Bute B et al.. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery.  N Engl J Med. 2001;  344 395-402
  • 76 Selnes O A, Grega M A, Bailey M M et al.. Neurocognitive outcomes 3 years after coronary artery bypass graft surgery: a controlled study.  Ann Thorac Surg. 2007;  84(6) 1885-1896
  • 77 Selnes O A, Grega M A, Bailey M M, Zeger S, Pham L, McKhann G M. A controlled study of cognitive outcomes after coronary artery bypass surgery (abstract).  Ann Neurol. 2007;  62(suppl 11) S21
  • 78 Restrepo L, Wityk R J, Grega M A et al.. Diffusion- and perfusion-weighted magnetic resonance imaging of the brain before and after coronary artery bypass grafting surgery.  Stroke. 2002;  33(12) 2909-2915
  • 79 Lederman R J, Breuer A C, Hanson M R et al.. Peripheral nervous system complications of coronary artery bypass graft surgery.  Ann Neurol. 1982;  12 297-301
  • 80 Brooker R F, Brown W R, Moody D M et al.. Cardiotomy suction: a major source of brain lipid emboli during cardiopulmonary bypass.  Ann Thorac Surg. 1998;  65 1651-1655
  • 81 Moody D M, Brown W R, Challa V R, Stump D A, Reboussin D M, Legault C. Brain microemboli associated with cardiopulmonary bypass: a histologic and magnetic resonance imaging study.  Ann Thorac Surg. 1995;  59 1304-1307
  • 82 Clark R E, Brillman J, Davis D A, Lovell M R, Price T RP, Magovern G J. Microemboli during coronary artery bypass grafting.  J Thorac Cardiovasc Surg. 1995;  109 249-258
  • 83 Carrier M, Denault A, Lavoie J, Perrault L P. Randomized controlled trial of pericardial blood processing with a cell-saving device on neurologic markers in elderly patients undergoing coronary artery bypass graft surgery.  Ann Thorac Surg. 2006;  82 51-56
  • 84 Goto T, Baba T, Matsumaya K, Honma K, Ura M, Koshiji T. Aortic atherosclerosis and postoperative neurological dysfunction in elderly coronary surgical patients.  Ann Thorac Surg. 2003;  75 1912-1918
  • 85 Suojaranta-Ylinen R T, Roine R O, Vento A E, Niskanen M M, Salmenpera M T. Improved neurologic outcome after implementing evidence-based guidelines for cardiac surgery.  J Cardiothorac Vasc Anesth. 2007;  21(4) 529-534
  • 86 Mathew J P, Fontes M L, Tudor I C et al.. A multicenter risk index for atrial fibrillation after cardiac surgery.  JAMA. 2004;  291 1720-1729
  • 87 Tufo H M, Oltfeld A M, Shekelle R. Central nervous system dysfunction following open-heart surgery.  JAMA. 1970;  212 1333-1340
  • 88 Benjo A, Thompson R E, Fine D et al.. Pulse pressure is an age-independent predictor of stroke development after cardiac surgery.  Hypertension. 2007;  50 630-635
  • 89 Caplan L R, Hennerici M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke.  Arch Neurol. 1998;  55 1475-1482
  • 90 Hartman G S, Yao F SF, Bruefach III M et al.. Severity of aortic atheromatous disease diagnosed by transesophageal echocardiography predicts stroke and other outcomes associated with coronary artery surgery: a prospective study.  Anesth Analg. 1996;  83 701-708
  • 91 Banbury M K, Kouchoukos N T, Allen K B et al.. Emboli capture using the Embol-X intraaortic filter in cardiac surgery: a multicentered randomized trial of 1,289 patients.  Ann Thorac Surg. 2003;  76 508-515
  • 92 Blauth C I. Macroemboli and microemboli during cardiopulmonary bypass.  Ann Thorac Surg. 1995;  59 1300-1303
  • 93 Schmitz C, Weinreich S, White J et al.. Can particulate extraction from the ascending aorta reduce neurologic injury in cardiac surgery?.  J Thorac Cardiovasc Surg. 2003;  126 1829-1836
  • 94 Nathan H J, Wells G A, Munson J L, Wozny D. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass.  Circulation. 2001;  104(12 Suppl 1) 85-91
  • 95 Rees K, Beranek-Stanley M, Burke M, Ebrahim S. Hypothermia to reduce neurological damage following coronary artery bypass surgery.  Cochrane Database Syst Rev. 2001;  1 CD002138
  • 96 Grocott H P, Mackenson G B, Grigore A M et al.. Postoperative hypothermia is associated with cognitive dysfunction after coronary artery bypass graft surgery.  Stroke. 2002;  33(2) 537-541
  • 97 Nathan H J, Wells G A, Munson J L, Wozny D. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass: a randomized trial.  Circulation. 2001;  104(12 Suppl 1) 85-91
  • 98 Nathan H J, Rodriguez R, Wozny D et al.. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass: five-year follow-up of a randomized trial.  J Thorac Cardiovasc Surg. 2007;  133 1206-1211
  • 99 Gold J P, Charlson M E, Williams-Russo P et al.. Improvements of outcomes after coronary artery bypass: a randomized trial comparing intraoperative high versus low mean arterial pressure.  J Thorac Cardiovasc Surg. 1995;  110 1302-1314
  • 100 Murphy G J, Reeves B C, Rogers C A, Rizvi S I, Culliford L, Angelini G D. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery.  Circulation. 2007;  116(22) 2544-2552
  • 101 Mangano D T, Tudor I C, Dietzel C. The risk associated with aprotinin in cardiac surgery.  N Engl J Med. 2006;  354(4) 353-365
  • 102 Schneeweiss S, Seeger J D, Landon J, Walker A M. Aprotinin during coronary-artery bypass grafting and risk of death.  N Engl J Med. 2008;  358 771-783
  • 103 Shaw A D, Stafford-Smith M, White W D et al.. The effect of aprotinin on outcome after coronary-artery bypass grafting.  N Engl J Med. 2008;  358 784-793
  • 104 Novitzky D, Boswell B B. Total myocardial revascularization without cardiopulmonary bypass utilizing computer-processed monitoring to assess cerebral perfusion.  Heart Surg Forum. 2000;  3(3) 198-202
  • 105 Biancari F, Mosorin M, Rasinaho E et al.. Postoperative stroke after off-pump versus on-pump coronary artery bypass surgery.  J Thorac Cardiovasc Surg. 2007;  133(1) 169-173
  • 106 Zangrillo A, Crescenzi G, Landoni G et al.. Off-pump coronary artery bypass grafting reduces postoperative neurologic complications.  J Cardiothorac Vasc Anesth. 2005;  19(2) 193-196
  • 107 van Dijk D, Spoor M, Hijman R et al.. Cognitive and cardiac outcomes 5 years after off-pump vs on-pump coronary artery bypass graft surgery.  JAMA. 2007;  297(7) 701-708
  • 108 Cheng D C, Bainbridge D, Martin J E, Novick R J. Evidence-based Perioperative Clinical Outcomes Research Group . Does off-pump coronary artery bypass reduce mortality, morbidity, and resource utilization when compared with conventional coronary artery bypass? A meta-analysis of randomized trials.  Anesthesiology. 2005;  102(1) 188-203
  • 109 Harrington D K, Walker A S, Kaukuntla H et al.. Selective antegrade cerebral perfusion attenuates brain metabolic deficit in aortic arch surgery: a prospective randomized trial.  Circulation. 2004;  110 231-236

Rebecca F GottesmanM.D. Ph.D. 

Department of Neurology, The Johns Hopkins Hospital, 600 North Wolfe Street

Meyer 6-109, Baltimore, MD 21287

Email: rgottesm@jhmi.edu