ABSTRACT
The management of severe brain injury requires a comprehensive approach in which imaging
is an indispensable complement to the clinical and physiological information acquired
at the bedside. Neuroimaging methods are routinely used in the diagnosis and prognosis
of a broad spectrum of patients with acute neurological dysfunction. With incremental
theoretical and technological refinements, imaging modalities are helping to unravel
fundamental questions regarding the pathophysiology and neuroplasticity associated
with critical neurological injury, and it is anticipated that this knowledge will
lead to new and effective therapeutic interventions. We review some of the established
and emerging structural and physiological imaging methods, and discuss their applications
in patients with critical injuries including trauma and encephalopathy due to anoxia,
liver failure, and sepsis.
KEYWORDS
Traumatic brain injury - encephalopathy - magnetic resonance imaging - diffusion tensor
imaging - susceptibility-weighted imaging - magnetic resonance spectroscopy - positron
emission tomography - single photon emission tomography - cerebral blood flow - cerebral
ischemia
REFERENCES
- 1
Ely E W, Shintani A, Truman B et al..
Delirium as a predictor of mortality in mechanically ventilated patients in the intensive
care unit.
JAMA.
2004;
291(14)
1753-1762
- 2
Eidelman L A, Putterman D, Putterman C, Sprung C L.
The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities.
JAMA.
1996;
275(6)
470-473
- 3
Moustafa R R, Baron J C.
Clinical review: Imaging in ischaemic stroke–implications for acute management.
Crit Care.
2007;
11(5)
227
- 4
Sage M R, Wilson A J, Scroop R.
Contrast media and the brain. The basis of CT and MR imaging enhancement.
Neuroimaging Clin N Am.
1998;
8(3)
695-707
- 5
Kidwell C S, Wintermark M.
Imaging of intracranial haemorrhage.
Lancet Neurol.
2008;
7(3)
256-267
- 6
Hathcock J T, Stickle R L.
Principles and concepts of computed tomography.
Vet Clin North Am Small Anim Pract.
1993;
23(2)
399-415
- 7
White S J, Hajnal J V, Young I R, Bydder G M.
Use of fluid-attenuated inversion-recovery pulse sequences for imaging the spinal
cord.
Magn Reson Med.
1992;
28(1)
153-162
- 8
Bradley Jr W G.
MR appearance of hemorrhage in the brain.
Radiology.
1993;
189(1)
15-26
- 9
Chalela J A, Kidwell C S, Nentwich L M et al..
Magnetic resonance imaging and computed tomography in emergency assessment of patients
with suspected acute stroke: a prospective comparison.
Lancet.
2007;
369(9558)
293-298
- 10
Kidwell C S, Chalela J A, Saver J L et al..
Comparison of MRI and CT for detection of acute intracerebral hemorrhage.
JAMA.
2004;
292(15)
1823-1830
- 11
Warach S, Chien D, Li W, Ronthal M, Edelman R R.
Fast magnetic resonance diffusion-weighted imaging of acute human stroke.
Neurology.
1992;
42(9)
1717-1723
- 12
Yokota H, Kurokawa A, Otsuka T, Kobayashi S, Nakazawa S.
Significance of magnetic resonance imaging in acute head injury.
J Trauma.
1991;
31(3)
351-357
- 13
Chalela J A, Wolf R L, Maldjian J A, Kasner S E.
MRI identification of early white matter injury in anoxic-ischemic encephalopathy.
Neurology.
2001;
56(4)
481-485
- 14
Haacke E M, Xu Y, Cheng Y C, Reichenbach J R.
Susceptibility weighted imaging (SWI).
Magn Reson Med.
2004;
52(3)
612-618
- 15
Linfante I, Llinas R H, Caplan L R, Warach S.
MRI features of intracerebral hemorrhage within 2 hours from symptom onset.
Stroke.
1999;
30(11)
2263-2267
- 16
de Souza J M, Domingues R C, Cruz Jr L C et al..
Susceptibility-weighted imaging for the evaluation of patients with familial cerebral
cavernous malformations: a comparison with T2-weighted fast spin-echo and gradient-echo
sequences.
AJNR Am J Neuroradiol.
2008;
29(1)
154-158
- 17
Idbaih A, Boukobza M, Crassard I et al..
MRI of clot in cerebral venous thrombosis: high diagnostic value of susceptibility-weighted
images.
Stroke.
2006;
37(4)
991-995
- 18
Sundgren P C, Dong Q, Gomez-Hassan D et al..
Diffusion tensor imaging of the brain: review of clinical applications.
Neuroradiology.
2004;
46(5)
339-350
- 19
Le Bihan D, Mangin J F, Poupon C et al..
Diffusion tensor imaging: concepts and applications.
J Magn Reson Imaging.
2001;
13(4)
534-546
- 20
Mori S, Zhang J.
Principles of diffusion tensor imaging and its applications to basic neuroscience
research.
Neuron.
2006;
51(5)
527-539
- 21 Mori S, Crain B J. MRI Atlas of Human White Matter. 1st ed. Amsterdam/Boston; Elsevier
2005
- 22
Mukherjee P, Bahn M M, McKinstry R C et al..
Differences between gray matter and white matter water diffusion in stroke: diffusion-tensor
MR imaging in 12 patients.
Radiology.
2000;
215(1)
211-220
- 23
Hsieh C T, Chen C Y, Chiang Y H, Chang C H, Chang C F.
Role of diffusion tensor imaging in a patient with spontaneous intracerebral hematoma
treated by stereotactic evacuation.
Surg Neurol.
2008;
70(1)
75-78
- 24
Arfanakis K, Haughton V M, Carew J D et al..
Diffusion tensor MR imaging in diffuse axonal injury.
AJNR Am J Neuroradiol.
2002;
23(5)
794-802
- 25
Kim D S, Garwood M.
High-field magnetic resonance techniques for brain research.
Curr Opin Neurobiol.
2003;
13(5)
612-619
- 26
Nakada T.
Clinical application of high and ultra high-field MRI.
Brain Dev.
2007;
29(6)
325-335
- 27
Wintermark M, Sesay M, Barbier E et al..
Comparative overview of brain perfusion imaging techniques.
Stroke.
2005;
36(9)
e83-e99
- 28
Kety S S, Schmidt C F.
The nitrous oxide method for the quantitative determination of cerebral blood flow
in man; theory, procedure and normal values.
J Clin Invest.
1948;
27(4)
476-483
- 29
Coles J P.
Regional ischemia after head injury.
Curr Opin Crit Care.
2004;
10(2)
120-125
- 30
Powers W J, Zazulia A R.
The use of positron emission tomography in cerebrovascular disease.
Neuroimaging Clin N Am.
2003;
13(4)
741-758
- 31
Lewis D H.
Functional brain imaging with cerebral perfusion SPECT in cerebrovascular disease,
epilepsy, and trauma.
Neurosurg Clin N Am.
1997;
8(3)
337-344
- 32
Ackerman R H, Correia J A, Alpert N M et al..
Positron imaging in ischemic stroke disease using compounds labeled with oxygen 15.
Initial results of clinicophysiologic correlations.
Arch Neurol.
1981;
38(9)
537-543
- 33
Zazulia A R, Diringer M N, Videen T O et al..
Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage.
J Cereb Blood Flow Metab.
2001;
21(7)
804-810
- 34
Minhas P S, Menon D K, Smielewski P et al..
Positron emission tomographic cerebral perfusion disturbances and transcranial Doppler
findings among patients with neurological deterioration after subarachnoid hemorrhage.
Neurosurgery.
2003;
52(5)
1017-1022
discussion 1022-1014
- 35
Coles J P, Minhas P S, Fryer T D et al..
Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical
relevance and monitoring correlates.
Crit Care Med.
2002;
30(9)
1950-1959
- 36
Coles J P, Fryer T D, Coleman M R et al..
Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative
metabolism.
Crit Care Med.
2007;
35(2)
568-578
- 37
Diringer M N, Videen T O, Yundt K et al..
Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic
brain injury.
J Neurosurg.
2002;
96(1)
103-108
- 38
Diringer M N, Aiyagari V, Zazulia A R, Videen T O, Powers W J.
Effect of hyperoxia on cerebral metabolic rate for oxygen measured using positron
emission tomography in patients with acute severe head injury.
J Neurosurg.
2007;
106(4)
526-529
- 39
Menon D K, Coles J P, Gupta A K et al..
Diffusion limited oxygen delivery following head injury.
Crit Care Med.
2004;
32(6)
1384-1390
- 40
Lockwood A H.
Positron emission tomography in the study of hepatic encephalopathy.
Metab Brain Dis.
2002;
17(4)
431-435
- 41
Edgren E, Enblad P, Grenvik A et al..
Cerebral blood flow and metabolism after cardiopulmonary resuscitation. A pathophysiologic
and prognostic positron emission tomography pilot study.
Resuscitation.
2003;
57(2)
161-170
- 42
Warwick J M.
Imaging of brain function using SPECT.
Metab Brain Dis.
2004;
19(1–2)
113-123
- 43
Vorstrup S, Hemmingsen R, Henriksen L et al..
Regional cerebral blood flow in patients with transient ischemic attacks studied by
xenon-133 inhalation and emission tomography.
Stroke.
1983;
14(6)
903-910
- 44
Ito H, Ishii K, Onuma T, Kawashima R, Fukuda H.
Cerebral perfusion changes in traumatic diffuse brain injury; IMP SPECT studies.
Ann Nucl Med.
1997;
11(2)
167-172
- 45
Leclerc X, Fichten A, Gauvrit J Y et al..
Symptomatic vasospasm after subarachnoid haemorrhage: assessment of brain damage by
diffusion and perfusion-weighted MRI and single-photon emission computed tomography.
Neuroradiology.
2002;
44(7)
610-616
- 46
Nakagawa Y, Matsumura K, Iwasa M et al..
Single photon emission computed tomography and statistical parametric mapping analysis
in cirrhotic patients with and without minimal hepatic encephalopathy.
Ann Nucl Med.
2004;
18(2)
123-129
- 47
Bonte F J, Devous Sr M D, Stokely E M, Homan R W.
Single-photon tomographic determination of regional cerebral blood flow in epilepsy.
AJNR Am J Neuroradiol.
1983;
4(3)
544-546
- 48
Drayer B P, Wolfson S K, Reinmuth O M et al..
Xenon enhanced CT for analysis of cerebral integrity, perfusion, and blood flow.
Stroke.
1978;
9(2)
123-130
- 49
Olsen T S, Larsen B, Skriver E B et al..
Focal cerebral hyperemia in acute stroke. Incidence, pathophysiology and clinical
significance.
Stroke.
1981;
12(5)
598-607
- 50
Fukui M B, Johnson D W, Yonas H et al..
Xe/CT cerebral blood flow evaluation of delayed symptomatic cerebral ischemia after
subarachnoid hemorrhage.
AJNR Am J Neuroradiol.
1992;
13(1)
265-270
- 51
Schroder M L, Muizelaar J P, Bullock M R, Salvant J B, Povlishock J T.
Focal ischemia due to traumatic contusions documented by stable xenon-CT and ultrastructural
studies.
J Neurosurg.
1995;
82(6)
966-971
- 52
Furuya Y, Hlatky R, Valadka A B, Diaz P, Robertson C S.
Comparison of cerebral blood flow in computed tomographic hypodense areas of the brain
in head-injured patients.
Neurosurgery.
2003;
52(2)
340-345
discussion 345-346
- 53
Bouma G J, Muizelaar J P, Stringer W A et al..
Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients
using xenon-enhanced computerized tomography.
J Neurosurg.
1992;
77(3)
360-368
- 54
Hoeffner E G, Case I, Jain R et al..
Cerebral perfusion CT: technique and clinical applications.
Radiology.
2004;
231(3)
632-644
- 55
Meier P, Zierler K L.
On the theory of the indicator-dilution method for measurement of blood flow and volume.
J Appl Physiol.
1954;
6(12)
731-744
- 56
Wintermark M, Fischbein N J, Smith W S et al..
Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric
stroke.
AJNR Am J Neuroradiol.
2005;
26(1)
104-112
- 57
Wintermark M, Thiran J P, Maeder P, Schnyder P, Meuli R.
Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable
xenon CT: a validation study.
AJNR Am J Neuroradiol.
2001;
22(5)
905-914
- 58
Nabavi D G, Cenic A, Craen R A et al..
CT assessment of cerebral perfusion: experimental validation and initial clinical
experience.
Radiology.
1999;
213(1)
141-149
- 59
Schramm P, Schellinger P D, Klotz E et al..
Comparison of perfusion computed tomography and computed tomography angiography source
images with perfusion-weighted imaging and diffusion-weighted imaging in patients
with acute stroke of less than 6 hours' duration.
Stroke.
2004;
35(7)
1652-1658
- 60
Wintermark M, Flanders A E, Velthuis B et al..
Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic
curve analysis in 130 patients suspected of acute hemispheric stroke.
Stroke.
2006;
37(4)
979-985
- 61
Tan J C, Dillon W P, Liu S et al..
Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients.
Ann Neurol.
2007;
61(6)
533-543
- 62
Wintermark M, Reichhart M, Cuisenaire O et al..
Comparison of admission perfusion computed tomography and qualitative diffusion- and
perfusion-weighted magnetic resonance imaging in acute stroke patients.
Stroke.
2002;
33(8)
2025-2031
- 63
Wintermark M, van Melle G, Schnyder P et al..
Admission perfusion CT: prognostic value in patients with severe head trauma.
Radiology.
2004;
232(1)
211-220
- 64
Pham M, Johnson A, Bartsch A J et al..
CT perfusion predicts secondary cerebral infarction after aneurysmal subarachnoid
hemorrhage.
Neurology.
2007;
69(8)
762-765
- 65
Edelman R R, Mattle H P, Atkinson D J et al..
Cerebral blood flow: assessment with dynamic contrast-enhanced T2*-weighted MR imaging
at 1.5 T.
Radiology.
1990;
176(1)
211-220
- 66
Kiselev V G.
On the theoretical basis of perfusion measurements by dynamic susceptibility contrast
MRI.
Magn Reson Med.
2001;
46(6)
1113-1122
- 67
Kajimoto K, Moriwaki H, Yamada N et al..
Cerebral hemodynamic evaluation using perfusion-weighted magnetic resonance imaging:
comparison with positron emission tomography values in chronic occlusive carotid disease.
Stroke.
2003;
34(7)
1662-1666
- 68
Takasawa M, Jones P S, Guadagno J V et al..
How reliable is perfusion MR in acute stroke? Validation and determination of the
penumbra threshold against quantitative PET.
Stroke.
2008;
39(3)
870-877
- 69
Bammer R.
Basic principles of diffusion-weighted imaging.
Eur J Radiol.
2003;
45(3)
169-184
- 70
Warach S, Gaa J, Siewert B, Wielopolski P, Edelman R R.
Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic
resonance imaging.
Ann Neurol.
1995;
37(2)
231-241
- 71
Lovblad K O, Baird A E, Schlaug G et al..
Ischemic lesion volumes in acute stroke by diffusion-weighted magnetic resonance imaging
correlate with clinical outcome.
Ann Neurol.
1997;
42(2)
164-170
- 72
Karonen J O, Vanninen R L, Liu Y et al..
Combined diffusion and perfusion MRI with correlation to single-photon emission CT
in acute ischemic stroke. Ischemic penumbra predicts infarct growth.
Stroke.
1999;
30(8)
1583-1590
- 73
Neumann-Haefelin T, Wittsack H J, Wenserski F et al..
Diffusion- and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke.
Stroke.
1999;
30(8)
1591-1597
- 74
Schlaug G, Benfield A, Baird A E et al..
The ischemic penumbra: operationally defined by diffusion and perfusion MRI.
Neurology.
1999;
53(7)
1528-1537
- 75
Baird A E, Lovblad K O, Dashe J F et al..
Clinical correlations of diffusion and perfusion lesion volumes in acute ischemic
stroke.
Cerebrovasc Dis.
2000;
10(6)
441-448
- 76
Butcher K S, Parsons M, MacGregor L et al..
Refining the perfusion-diffusion mismatch hypothesis.
Stroke.
2005;
36(6)
1153-1159
- 77
Meng X, Fisher M, Shen Q, Sotak C H, Duong T Q.
Characterizing the diffusion/perfusion mismatch in experimental focal cerebral ischemia.
Ann Neurol.
2004;
55(2)
207-212
- 78
Williams D S, Detre J A, Leigh J S, Koretsky A P.
Magnetic resonance imaging of perfusion using spin inversion of arterial water.
Proc Natl Acad Sci U S A.
1992;
89(1)
212-216
- 79
Ye F Q, Berman K F, Ellmore T et al..
H(2)(15)O PET validation of steady-state arterial spin tagging cerebral blood flow
measurements in humans.
Magn Reson Med.
2000;
44(3)
450-456
- 80
Parkes L M, Rashid W, Chard D T, Tofts P S.
Normal cerebral perfusion measurements using arterial spin labeling: reproducibility,
stability, and age and gender effects.
Magn Reson Med.
2004;
51(4)
736-743
- 81
Chalela J A, Alsop D C, Gonzalez-Atavales J B et al..
Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial
spin labeling.
Stroke.
2000;
31(3)
680-687
- 82
Kimura H, Kado H, Koshimoto Y et al..
Multislice continuous arterial spin-labeled perfusion MRI in patients with chronic
occlusive cerebrovascular disease: a correlative study with CO2 PET validation.
J Magn Reson Imaging.
2005;
22(2)
189-198
- 83
Wolf R L, Alsop D C, Levy-Reis I et al..
Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy
by use of arterial spin labeled perfusion MR imaging.
AJNR Am J Neuroradiol.
2001;
22(7)
1334-1341
- 84
Forbes M L, Hendrich K S, Kochanek P M et al..
Assessment of cerebral blood flow and CO2 reactivity after controlled cortical impact
by perfusion magnetic resonance imaging using arterial spin-labeling in rats.
J Cereb Blood Flow Metab.
1997;
17(8)
865-874
- 85
Van Zijl P C, Barker P B.
Magnetic resonance spectroscopy and spectroscopic imaging for the study of brain metabolism.
Ann N Y Acad Sci.
1997;
820
75-96
- 86
Haseler L J, Sibbitt Jr W L, Mojtahedzadeh H N et al..
Proton MR spectroscopic measurement of neurometabolites in hepatic encephalopathy
during oral lactulose therapy.
AJNR Am J Neuroradiol.
1998;
19(9)
1681-1686
- 87
Breiter S N, Arroyo S, Mathews V P et al..
Proton MR spectroscopy in patients with seizure disorders.
AJNR Am J Neuroradiol.
1994;
15(2)
373-384
- 88
Garnett M R, Blamire A M, Rajagopalan B, Styles P, Cadoux-Hudson T A.
Evidence for cellular damage in normal-appearing white matter correlates with injury
severity in patients following traumatic brain injury: a magnetic resonance spectroscopy
study.
Brain.
2000;
123(Pt 7)
1403-1409
- 89
Vink R, McIntosh T K, Weiner M W, Faden A I.
Effects of traumatic brain injury on cerebral high-energy phosphates and pH: a 31P
magnetic resonance spectroscopy study.
J Cereb Blood Flow Metab.
1987;
7(5)
563-571
- 90
Logothetis N K.
What we can do and what we cannot do with fMRI.
Nature.
2008;
453(7197)
869-878
- 91
Li T Q, Haefelin T N, Chan B et al..
Assessment of hemodynamic response during focal neural activity in human using bolus
tracking, arterial spin labeling and BOLD techniques.
Neuroimage.
2000;
12(4)
442-451
- 92
Lu H, Golay X, Pekar J J, Van Zijl P C.
Functional magnetic resonance imaging based on changes in vascular space occupancy.
Magn Reson Med.
2003;
50(2)
263-274
- 93
Ogawa S, Lee T M, Kay A R, Tank D W.
Brain magnetic resonance imaging with contrast dependent on blood oxygenation.
Proc Natl Acad Sci U S A.
1990;
87(24)
9868-9872
- 94
Le Bihan D, Urayama S, Aso T, Hanakawa T, Fukuyama H.
Direct and fast detection of neuronal activation in the human brain with diffusion
MRI.
Proc Natl Acad Sci U S A.
2006;
103(21)
8263-8268
- 95
Logothetis N K, Wandell B A.
Interpreting the BOLD signal.
Annu Rev Physiol.
2004;
66
735-769
- 96
Damoiseaux J S, Rombouts S A, Barkhof F et al..
Consistent resting-state networks across healthy subjects.
Proc Natl Acad Sci U S A.
2006;
103(37)
13848-13853
- 97
Fox M D, Raichle M E.
Spontaneous fluctuations in brain activity observed with functional magnetic resonance
imaging.
Nat Rev Neurosci.
2007;
8(9)
700-711
- 98
Greicius M D, Supekar K, Menon V, Dougherty R F.
Resting-state functional connectivity reflects structural connectivity in the default
mode network.
Cereb Cortex.
2008 Apr 9;
, (Epub ahead of print)
- 99
Rocca M A, Pagani E, Absinta M et al..
Altered functional and structural connectivities in patients with MS: a 3-T study.
Neurology.
2007;
69(23)
2136-2145
- 100
Upadhyay J, Silver A, Knaus T A et al..
Effective and structural connectivity in the human auditory cortex.
J Neurosci.
2008;
28(13)
3341-3349
- 101 Stippich C, Blatow M. Clinical Functional MRI: Presurgical Functional Neuroimaging. Berlin/New
York; Springer 2007: 268
- 102
Dijkhuizen R M, Ren J, Mandeville J B et al..
Functional magnetic resonance imaging of reorganization in rat brain after stroke.
Proc Natl Acad Sci U S A.
2001;
98(22)
12766-12771
- 103
Grefkes C, Nowak D A, Eickhoff S B et al..
Cortical connectivity after subcortical stroke assessed with functional magnetic resonance
imaging.
Ann Neurol.
2008;
63(2)
236-246
- 104
Mani T M, Miller L S, Yanasak N, Macciocchi S.
Evaluation of changes in motor and visual functional activation over time following
moderate-to-severe brain injury.
Brain Inj.
2007;
21(11)
1155-1163
- 105
McAllister T W, Saykin A J, Flashman L A et al..
Brain activation during working memory 1 month after mild traumatic brain injury:
a functional MRI study.
Neurology.
1999;
53(6)
1300-1308
- 106
Coleman M R, Rodd J M, Davis M H et al..
Do vegetative patients retain aspects of language comprehension? Evidence from fMRI.
Brain.
2007;
130(Pt 10)
2494-2507
- 107
Schiff N D, Rodriguez-Moreno D, Kamal A et al..
fMRI reveals large-scale network activation in minimally conscious patients.
Neurology.
2005;
64(3)
514-523
- 108
Stiell I G, Lesiuk H, Wells G A et al..
Canadian CT head rule study for patients with minor head injury: methodology for phase
II (validation and economic analysis).
Ann Emerg Med.
2001;
38(3)
317-322
- 109
Stiell I G, Lesiuk H, Wells G A et al..
The Canadian CT Head Rule Study for patients with minor head injury: rationale, objectives,
and methodology for phase I (derivation).
Ann Emerg Med.
2001;
38(2)
160-169
- 110
Haydel M J, Preston C A, Mills T J et al..
Indications for computed tomography in patients with minor head injury.
N Engl J Med.
2000;
343(2)
100-105
- 111
Yates D, Aktar R, Hill J.
Assessment, investigation, and early management of head injury: summary of NICE guidance.
BMJ.
2007;
335(7622)
719-720
- 112
Stiell I G, Clement C M, Rowe B H et al..
Comparison of the Canadian CT Head Rule and the New Orleans Criteria in patients with
minor head injury.
JAMA.
2005;
294(12)
1511-1518
- 113
Gentry L R, Thompson B, Godersky J C.
Trauma to the corpus callosum: MR features.
AJNR Am J Neuroradiol.
1988;
9(6)
1129-1138
- 114
Gentry L R, Godersky J C, Thompson B, Dunn V D.
Prospective comparative study of intermediate-field MR and CT in the evaluation of
closed head trauma.
AJR Am J Roentgenol.
1988;
150(3)
673-682
- 115
Gentry L R, Godersky J C, Thompson B H.
Traumatic brain stem injury: MR imaging.
Radiology.
1989;
171(1)
177-187
- 116
Mittl R L, Grossman R I, Hiehle J F et al..
Prevalence of MR evidence of diffuse axonal injury in patients with mild head injury
and normal head CT findings.
AJNR Am J Neuroradiol.
1994;
15(8)
1583-1589
- 117
Ezaki Y, Tsutsumi K, Morikawa M, Nagata I.
Role of diffusion-weighted magnetic resonance imaging in diffuse axonal injury.
Acta Radiol.
2006;
47(7)
733-740
- 118
Okanishi T, Saito Y, Fujii S et al..
Low signal intensity and increased anisotropy on magnetic resonance imaging in the
white matter lesion after head trauma: unrecognized findings of diffuse axonal injury.
J Neurol Sci.
2007;
263(1–2)
218-222
- 119
Meythaler J M, Peduzzi J D, Eleftheriou E, Novack T A.
Current concepts: diffuse axonal injury-associated traumatic brain injury.
Arch Phys Med Rehabil.
2001;
82(10)
1461-1471
- 120
Ashikaga R, Araki Y, Ishida O.
MRI of head injury using FLAIR.
Neuroradiology.
1997;
39(4)
239-242
- 121
Scheid R, Preul C, Gruber O, Wiggins C, von Cramon D Y.
Diffuse axonal injury associated with chronic traumatic brain injury: evidence from
T2*-weighted gradient-echo imaging at 3 T.
AJNR Am J Neuroradiol.
2003;
24(6)
1049-1056
- 122
Ashwal S, Holshouser B A, Tong K A.
Use of advanced neuroimaging techniques in the evaluation of pediatric traumatic brain
injury.
Dev Neurosci.
2006;
28(4–5)
309-326
- 123
Tong K A, Ashwal S, Holshouser B A et al..
Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse
axonal injury: improved detection and initial results.
Radiology.
2003;
227(2)
332-339
- 124
Tong K A, Ashwal S, Holshouser B A et al..
Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions.
Ann Neurol.
2004;
56(1)
36-50
- 125
Goetz P, Blamire A, Rajagopalan B et al..
Increase in apparent diffusion coefficient in normal appearing white matter following
human traumatic brain injury correlates with injury severity.
J Neurotrauma.
2004;
21(6)
645-654
- 126
Huisman T A, Sorensen A G, Hergan K, Gonzalez R G, Schaefer P W.
Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head
injury.
J Comput Assist Tomogr.
2003;
27(1)
5-11
- 127
Hergan K, Schaefer P W, Sorensen A G, Gonzalez R G, Huisman T A.
Diffusion-weighted MRI in diffuse axonal injury of the brain.
Eur Radiol.
2002;
12(10)
2536-2541
- 128
Liu A Y, Maldjian J A, Bagley L J, Sinson G P, Grossman R I.
Traumatic brain injury: diffusion-weighted MR imaging findings.
AJNR Am J Neuroradiol.
1999;
20(9)
1636-1641
- 129
Xu J, Rasmussen I A, Lagopoulos J, Haberg A.
Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution
diffusion tensor imaging.
J Neurotrauma.
2007;
24(5)
753-765
- 130
Huisman T A, Schwamm L H, Schaefer P W et al..
Diffusion tensor imaging as potential biomarker of white matter injury in diffuse
axonal injury.
AJNR Am J Neuroradiol.
2004;
25(3)
370-376
- 131
Sidaros A, Engberg A W, Sidaros K et al..
Diffusion tensor imaging during recovery from severe traumatic brain injury and relation
to clinical outcome: a longitudinal study.
Brain.
2008;
131(Pt 2)
559-572
- 132
Coles J P.
Imaging after brain injury.
Br J Anaesth.
2007;
99(1)
49-60
- 133
Diringer M N, Yundt K, Videen T O et al..
No reduction in cerebral metabolism as a result of early moderate hyperventilation
following severe traumatic brain injury.
J Neurosurg.
2000;
92(1)
7-13
- 134
Steiner L A, Balestreri M, Johnston A J et al..
Effects of moderate hyperventilation on cerebrovascular pressure-reactivity after
head injury.
Acta Neurochir Suppl.
2005;
95
17-20
- 135
Nortje J, Coles J P, Timofeev I et al..
Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic
brain injury: preliminary findings.
Crit Care Med.
2008;
36(1)
273-281
- 136
Johnston A J, Steiner L A, Coles J P et al..
Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism
after head injury.
Crit Care Med.
2005;
33(1)
189-195
discussion 255-187
- 137
McLaughlin M R, Marion D W.
Cerebral blood flow and vasoresponsivity within and around cerebral contusions.
J Neurosurg.
1996;
85(5)
871-876
- 138
von Oettingen G, Bergholt B, Gyldensted C, Astrup J.
Blood flow and ischemia within traumatic cerebral contusions.
Neurosurgery.
2002;
50(4)
781-788
discussion 788-790
- 139
Inoue Y, Shiozaki T, Tasaki O et al..
Changes in cerebral blood flow from the acute to the chronic phase of severe head
injury.
J Neurotrauma.
2005;
22(12)
1411-1418
- 140
Lewine J D, Davis J T, Bigler E D et al..
Objective documentation of traumatic brain injury subsequent to mild head trauma:
multimodal brain imaging with MEG, SPECT, and MRI.
J Head Trauma Rehabil.
2007;
22(3)
141-155
- 141
Cunningham A S, Salvador R, Coles J P et al..
Physiological thresholds for irreversible tissue damage in contusional regions following
traumatic brain injury.
Brain.
2005;
128(Pt 8)
1931-1942
- 142
Vespa P, McArthur D L, Alger J et al..
Regional heterogeneity of post-traumatic brain metabolism as studied by microdialysis,
magnetic resonance spectroscopy and positron emission tomography.
Brain Pathol.
2004;
14(2)
210-214
- 143
Coles J P, Fryer T D, Smielewski P et al..
Incidence and mechanisms of cerebral ischemia in early clinical head injury.
J Cereb Blood Flow Metab.
2004;
24(2)
202-211
- 144
Abate M G, Trivedi M, Fryer T D et al..
Early derangements in oxygen and glucose metabolism following head injury: the ischemic
penumbra and pathophysiological heterogeneity.
Neurocrit Care.
2008;
, June 19 (Epub ahead of print)
- 145
Gupta A K, Hutchinson P J, Fryer T et al..
Measurement of brain tissue oxygenation performed using positron emission tomography
scanning to validate a novel monitoring method.
J Neurosurg.
2002;
96(2)
263-268
- 146
Steiner L A, Coles J P, Johnston A J et al..
Responses of posttraumatic pericontusional cerebral blood flow and blood volume to
an increase in cerebral perfusion pressure.
J Cereb Blood Flow Metab.
2003;
23(11)
1371-1377
- 147
Schiff N D, Ribary U, Moreno D R et al..
Residual cerebral activity and behavioural fragments can remain in the persistently
vegetative brain.
Brain.
2002;
125(Pt 6)
1210-1234
- 148
Wintermark M, Chiolero R, van Melle G et al..
Relationship between brain perfusion computed tomography variables and cerebral perfusion
pressure in severe head trauma patients.
Crit Care Med.
2004;
32(7)
1579-1587
- 149
Wintermark M, Chiolero R, Van Melle G et al..
Cerebral vascular autoregulation assessed by perfusion-CT in severe head trauma patients.
J Neuroradiol.
2006;
33(1)
27-37
- 150
Soustiel J F, Mahamid E, Goldsher D, Zaaroor M.
Perfusion-CT for early assessment of traumatic cerebral contusions.
Neuroradiology.
2008;
50(2)
189-196
- 151
Hemphill III J C, Smith W S, Sonne D C, Morabito D, Manley G T.
Relationship between brain tissue oxygen tension and CT perfusion: feasibility and
initial results.
AJNR Am J Neuroradiol.
2005;
26(5)
1095-1100
- 152
Garnett M R, Blamire A M, Corkill R G et al..
Early proton magnetic resonance spectroscopy in normal-appearing brain correlates
with outcome in patients following traumatic brain injury.
Brain.
2000;
123(Pt 10)
2046-2054
- 153
Signoretti S, Marmarou A, Aygok G A et al..
Assessment of mitochondrial impairment in traumatic brain injury using high-resolution
proton magnetic resonance spectroscopy.
J Neurosurg.
2008;
108(1)
42-52
- 154
Holshouser B A, Tong K A, Ashwal S.
Proton MR spectroscopic imaging depicts diffuse axonal injury in children with traumatic
brain injury.
AJNR Am J Neuroradiol.
2005;
26(5)
1276-1285
- 155
Son B C, Park C K, Choi B G et al..
Metabolic changes in pericontusional oedematous areas in mild head injury evaluated
by 1H MRS.
Acta Neurochir Suppl.
2000;
76
13-16
- 156
Cecil K M, Hills E C, Sandel M E et al..
Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium
of the corpus callosum of brain-injured patients.
J Neurosurg.
1998;
88(5)
795-801
- 157
Schuhmann M U, Stiller D, Skardelly M et al..
Metabolic changes in the vicinity of brain contusions: a proton magnetic resonance
spectroscopy and histology study.
J Neurotrauma.
2003;
20(8)
725-743
- 158
Scheibel R S, Pearson D A, Faria L P et al..
An fMRI study of executive functioning after severe diffuse TBI.
Brain Inj.
2003;
17(11)
919-930
- 159
Soeda A, Nakashima T, Okumura A et al..
Cognitive impairment after traumatic brain injury: a functional magnetic resonance
imaging study using the Stroop task.
Neuroradiology.
2005;
47(7)
501-506
- 160
Newsome M R, Scheibel R S, Steinberg J L et al..
Working memory brain activation following severe traumatic brain injury.
Cortex.
2007;
43(1)
95-111
- 161
Moores K A, Clark C R, McFarlane A C et al..
Abnormal recruitment of working memory updating networks during maintenance of trauma-neutral
information in post-traumatic stress disorder.
Psychiatry Res.
2008;
163(2)
156-170
- 162
Hillary F G, Steffener J, Biswal B B et al..
Functional magnetic resonance imaging technology and traumatic brain injury rehabilitation:
guidelines for methodological and conceptual pitfalls.
J Head Trauma Rehabil.
2002;
17(5)
411-430
- 163
Torbey M T, Selim M, Knorr J, Bigelow C, Recht L.
Quantitative analysis of the loss of distinction between gray and white matter in
comatose patients after cardiac arrest.
Stroke.
2000;
31(9)
2163-2167
- 164
Arbelaez A, Castillo M, Mukherji S K.
Diffusion-weighted MR imaging of global cerebral anoxia.
AJNR Am J Neuroradiol.
1999;
20(6)
999-1007
- 165
Takahashi S, Higano S, Ishii K et al..
Hypoxic brain damage: cortical laminar necrosis and delayed changes in white matter
at sequential MR imaging.
Radiology.
1993;
189(2)
449-556
- 166
Weiss N, Galanaud D, Carpentier A, Naccache L, Puybasset L.
Clinical review: prognostic value of magnetic resonance imaging in acute brain injury
and coma.
Crit Care.
2007;
11(5)
230
- 167
Rupright J, Woods E A, Singh A.
Hypoxic brain injury: evaluation by single photon emission computed tomography.
Arch Phys Med Rehabil.
1996;
77(11)
1205-1208
- 168
Graham S H, Meyerhoff D J, Bayne L, Sharp F R, Weiner M W.
Magnetic resonance spectroscopy of N-acetylaspartate in hypoxic-ischemic encephalopathy.
Ann Neurol.
1994;
35(4)
490-494
- 169
Wartenberg K E, Patsalides A, Yepes M S.
Is magnetic resonance spectroscopy superior to conventional diagnostic tools in hypoxic-ischemic
encephalopathy?.
J Neuroimaging.
2004;
14(2)
180-186
- 170
Hanrahan J D, Sargentoni J, Azzopardi D et al..
Cerebral metabolism within 18 hours of birth asphyxia: a proton magnetic resonance
spectroscopy study.
Pediatr Res.
1996;
39(4 Pt 1)
584-590
- 171
Cordoba J, Minguez B.
Hepatic encephalopathy.
Semin Liver Dis.
2008;
28(1)
70-80
- 172
Zeneroli M L, Cioni G, Crisi G, Vezzelli C, Ventura E.
Globus pallidus alterations and brain atrophy in liver cirrhosis patients with encephalopathy:
an MR imaging study.
Magn Reson Imaging.
1991;
9(3)
295-302
- 173
Rovira A, Cordoba J, Sanpedro F et al..
Normalization of T2 signal abnormalities in hemispheric white matter with liver transplant.
Neurology.
2002;
59(3)
335-341
- 174
Lodi R, Tonon C, Stracciari A et al..
Diffusion MRI shows increased water apparent diffusion coefficient in the brains of
cirrhotics.
Neurology.
2004;
62(5)
762-766
- 175
Kale R A, Gupta R K, Saraswat V A et al..
Demonstration of interstitial cerebral edema with diffusion tensor MR imaging in type
C hepatic encephalopathy.
Hepatology.
2006;
43(4)
698-706
- 176
Munoz S J, Robinson M, Northrup B et al..
Elevated intracranial pressure and computed tomography of the brain in fulminant hepatocellular
failure.
Hepatology.
1991;
13(2)
209-212
- 177 Osborn A G. Diagnostic Imaging: Brain. 1st ed. Salt Lake City, UT; Amirsys 2004
- 178
Ranjan P, Mishra A M, Kale R, Saraswat V A, Gupta R K.
Cytotoxic edema is responsible for raised intracranial pressure in fulminant hepatic
failure: in vivo demonstration using diffusion-weighted MRI in human subjects.
Metab Brain Dis.
2005;
20(3)
181-192
- 179
Saraswat V A, Saksena S, Nath K et al..
Evaluation of mannitol effect in patients with acute hepatic failure and acute-on-chronic
liver failure using conventional MRI, diffusion tensor imaging and in-vivo proton
MR spectroscopy.
World J Gastroenterol.
2008;
14(26)
4168-4178
- 180
Lockwood A H, Weissenborn K, Bokemeyer M, Tietge U, Burchert W.
Correlations between cerebral glucose metabolism and neuropsychological test performance
in nonalcoholic cirrhotics.
Metab Brain Dis.
2002;
17(1)
29-40
- 181
Lockwood A H, Yap E W, Rhoades H M, Wong W H.
Altered cerebral blood flow and glucose metabolism in patients with liver disease
and minimal encephalopathy.
J Cereb Blood Flow Metab.
1991;
11(2)
331-336
- 182
Lockwood A H, McDonald J M, Reiman R E et al..
The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia.
J Clin Invest.
1979;
63(3)
449-460
- 183
Cagnin A, Taylor-Robinson S D, Forton D M, Banati R B.
In vivo imaging of cerebral “peripheral benzodiazepine binding sites” in patients
with hepatic encephalopathy.
Gut.
2006;
55(4)
547-553
- 184
Catafau A M, Kulisevsky J, Berna L et al..
Relationship between cerebral perfusion in frontal-limbic-basal ganglia circuits and
neuropsychologic impairment in patients with subclinical hepatic encephalopathy.
J Nucl Med.
2000;
41(3)
405-410
- 185
Butterworth R F.
Pathogenesis of hepatic encephalopathy: new insights from neuroimaging and molecular
studies.
J Hepatol.
2003;
39(2)
278-285
- 186
Haussinger D, Laubenberger J, vom Dahl S et al..
Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity
and hepatic encephalopathy.
Gastroenterology.
1994;
107(5)
1475-1480
- 187
Miese F, Kircheis G, Wittsack H J et al..
1H-MR spectroscopy, magnetization transfer, and diffusion-weighted imaging in alcoholic
and nonalcoholic patients with cirrhosis with hepatic encephalopathy.
AJNR Am J Neuroradiol.
2006;
27(5)
1019-1026
- 188
Naegele T, Grodd W, Viebahn R et al..
MR imaging and (1)H spectroscopy of brain metabolites in hepatic encephalopathy: time-course
of renormalization after liver transplantation.
Radiology.
2000;
216(3)
683-691
- 189
Zwingmann C, Chatauret N, Leibfritz D, Butterworth R F.
Selective increase of brain lactate synthesis in experimental acute liver failure:
results of a H-C nuclear magnetic resonance study.
Hepatology.
2003;
37(2)
420-428
- 190
Kanamori K, Parivar F, Ross B D.
A 15N NMR study of in vivo cerebral glutamine synthesis in hyperammonemic rats.
NMR Biomed.
1993;
6(1)
21-26
- 191
Kanamori K, Ross B D.
Kinetics of glial glutamine efflux and the mechanism of neuronal uptake studied in
vivo in mildly hyperammonemic rat brain.
J Neurochem.
2006;
99(4)
1103-1113
- 192
Zafiris O, Kircheis G, Rood H A et al..
Neural mechanism underlying impaired visual judgement in the dysmetabolic brain: an
fMRI study.
Neuroimage.
2004;
22(2)
541-552
- 193
Zhang L J, Yang G, Yin J, Liu Y, Qi J.
Neural mechanism of cognitive control impairment in patients with hepatic cirrhosis:
a functional magnetic resonance imaging study.
Acta Radiol.
2007;
48(5)
577-587
- 194
Zhang L J, Yang G, Yin J, Liu Y, Qi J.
Abnormal default-mode network activation in cirrhotic patients: a functional magnetic
resonance imaging study.
Acta Radiol.
2007;
48(7)
781-787
- 195
Siami S, Annane D, Sharshar T.
The encephalopathy in sepsis.
Crit Care Clin.
2008;
24(1)
67-82
, viii
- 196
Jackson A C, Gilbert J J, Young G B, Bolton C F.
The encephalopathy of sepsis.
Can J Neurol Sci.
1985;
12(4)
303-307
- 197
Finelli P F, Uphoff D F.
Magnetic resonance imaging abnormalities with septic encephalopathy.
J Neurol Neurosurg Psychiatry.
2004;
75(8)
1189-1191
- 198
Sharshar T, Carlier R, Bernard F et al..
Brain lesions in septic shock: a magnetic resonance imaging study.
Intensive Care Med.
2007;
33(5)
798-806
- 199
Hollinger P, Zurcher R, Schroth G, Mattle H P.
Diffusion magnetic resonance imaging findings in cerebritis and brain abscesses in
a patient with septic encephalopathy.
J Neurol.
2000;
247(3)
232-234
- 200
Bartynski W S, Boardman J F, Zeigler Z R, Shadduck R K, Lister J.
Posterior reversible encephalopathy syndrome in infection, sepsis, and shock.
AJNR Am J Neuroradiol.
2006;
27(10)
2179-2190
- 201
Kampfl A, Franz G, Aichner F et al..
The persistent vegetative state after closed head injury: clinical and magnetic resonance
imaging findings in 42 patients.
J Neurosurg.
1998;
88(5)
809-816
- 202
Woischneck D, Klein S, Reissberg S et al..
Prognosis of brain stem lesion in children with head injury.
Childs Nerv Syst.
2003;
19(3)
174-178
- 203
Firsching R, Woischneck D, Klein S, Ludwig K, Dohring W.
Brain stem lesions after head injury.
Neurol Res.
2002;
24(2)
145-146
- 204
Firsching R, Woischneck D, Klein S et al..
Classification of severe head injury based on magnetic resonance imaging.
Acta Neurochir (Wien).
2001;
143(3)
263-271
- 205
Wedekind C, Hesselmann V, Klug N.
Comparison of MRI and electrophysiological studies for detecting brainstem lesions
in traumatic brain injury.
Muscle Nerve.
2002;
26(2)
270-273
- 206
Wedekind C, Hesselmann V, Lippert-Gruner M, Ebel M.
Trauma to the pontomesencephalic brainstem-a major clue to the prognosis of severe
traumatic brain injury.
Br J Neurosurg.
2002;
16(3)
256-260
- 207
Carpentier A, Galanaud D, Puybasset L et al..
Early morphologic and spectroscopic magnetic resonance in severe traumatic brain injuries
can detect “invisible brain stem damage” and predict “vegetative states”.
J Neurotrauma.
2006;
23(5)
674-685
- 208
Paterakis K, Karantanas A H, Komnos A, Volikas Z.
Outcome of patients with diffuse axonal injury: the significance and prognostic value
of MRI in the acute phase.
J Trauma.
2000;
49(6)
1071-1075
- 209
Zheng W B, Liu G R, Kong K M, Wu R H.
Coma duration prediction in diffuse axonal injury: analyses of apparent diffusion
coefficient and clinical prognostic factors.
Conf Proc IEEE Eng Med Biol Soc.
2006;
1
1052-1055
- 210
Ross B D, Ernst T, Kreis R et al..
1H MRS in acute traumatic brain injury.
J Magn Reson Imaging.
1998;
8(4)
829-840
- 211
Friedman S D, Brooks W M, Jung R E et al..
Quantitative proton MRS predicts outcome after traumatic brain injury.
Neurology.
1999;
52(7)
1384-1391
- 212
Sinson G, Bagley L J, Cecil K M et al..
Magnetization transfer imaging and proton MR spectroscopy in the evaluation of axonal
injury: correlation with clinical outcome after traumatic brain injury.
AJNR Am J Neuroradiol.
2001;
22(1)
143-151
- 213
Uzan M, Albayram S, Dashti S G et al..
Thalamic proton magnetic resonance spectroscopy in vegetative state induced by traumatic
brain injury.
J Neurol Neurosurg Psychiatry.
2003;
74(1)
33-38
- 214
Oder W, Goldenberg G, Podreka I, Deecke L.
HM-PAO-SPECT in persistent vegetative state after head injury: prognostic indicator
of the likelihood of recovery?.
Intensive Care Med.
1991;
17(3)
149-153
- 215
Bavetta S, Nimmon C C, White J et al..
A prospective study comparing SPET with MRI and CT as prognostic indicators following
severe closed head injury.
Nucl Med Commun.
1994;
15(12)
961-968
- 216
Shiina G, Onuma T, Kameyama M et al..
Sequential assessment of cerebral blood flow in diffuse brain injury by 123I-iodoamphetamine
single-photon emission CT.
AJNR Am J Neuroradiol.
1998;
19(2)
297-302
- 217
Roine R O, Raininko R, Erkinjuntti T, Ylikoski A, Kaste M.
Magnetic resonance imaging findings associated with cardiac arrest.
Stroke.
1993;
24(7)
1005-1014
- 218
Els T, Kassubek J, Kubalek R, Klisch J.
Diffusion-weighted MRI during early global cerebral hypoxia: a predictor for clinical
outcome?.
Acta Neurol Scand.
2004;
110(6)
361-367
- 219
Wijdicks E F, Campeau N G, Miller G M.
MR imaging in comatose survivors of cardiac resuscitation.
AJNR Am J Neuroradiol.
2001;
22(8)
1561-1565
- 220
Schaafsma A, de Jong B M, Bams J L et al..
Cerebral perfusion and metabolism in resuscitated patients with severe post-hypoxic
encephalopathy.
J Neurol Sci.
2003;
210(1–2)
23-30
- 221
Berek K, Lechleitner P, Luef G et al..
Early determination of neurological outcome after prehospital cardiopulmonary resuscitation.
Stroke.
1995;
26(4)
543-549
- 222
Wijdicks E F, Hijdra A, Young G B et al..
Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary
resuscitation (an evidence-based review): report of the Quality Standards Subcommittee
of the American Academy of Neurology.
Neurology.
2006;
67(2)
203-210
Robert D StevensM.D.
Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical
Care Medicine, Neurology, and Neurosurgery, Johns Hopkins Hospital
600 North Wolfe Street, Meyer 8-140, Baltimore, MD 21287
Email: rstevens@jhmi.edu