RSS-Feed abonnieren
DOI: 10.1055/s-0028-1109341
© Georg Thieme Verlag KG Stuttgart · New York
Image Data Compression in Diagnostic Imaging: International Literature Review and Workflow Recommendation
Bilddatenkompression in der bildgebenden Diagnostik: Internationale Literaturstudie und Workflow-VorschlagPublikationsverlauf
received: 12.9.2008
accepted: 10.2.2009
Publikationsdatum:
09. Juni 2009 (online)

Zusammenfassung
Ziel: Hochvolumige Datensätze der bildgebenden Diagnostik (Direktradiografie, Multi-Slice-CT etc.) sichern die diagnostische Betreuung. Die bildgebende Diagnostik hat als Querschnittsfach Schrittmacherfunktion für effektive Workflow-Szenarien übernommen. Für ein effektives Datenmanagement sind hierfür seit Jahren Konzepte zur Datenkompression diskutiert worden. Im Februar 2008 hat eine Konsensuskonferenz der Deutschen Röntgengesellschaft stattgefunden. Es wurden einzelne Datenkompressionstechniken, Kompressionsfaktoren und deren Organbezug tabellarisch als Empfehlung zusammengestellt. Material und Methoden: Unsere Arbeit gibt eine Gesamtübersicht über den Literaturstand zur Datenkompression, Technologie (JPEG und JPEG 2000) und Organbezug und analysiert unterschiedliche Workflow-Szenarien. Dies war Grundlage der Konsensuskonferenz. Die Studien wurden in 4 Level (0 – 3) in Abhängigkeit zu ihrer Evidenz eingeteilt. Für den höchsten Level 3 konnten 51 Studien ausgewertet werden. Ergebnisse: Mit Ausnahme der Schädel-CT wird ein einheitlicher Kompressionsfaktor von 1 : 8 empfohlen. Schädel-CT können ohne diagnostischen Qualitätsverlust mit einem Kompressionswert von 1:5 komprimiert werden. Aus Workflow-Sicht empfehlen wir, Kompressionen an den Modalitäten (CT etc.) vorzunehmen. PACS-basierte Kompressionen sind jedoch derzeit üblich. In diesen Fällen werden allerdings nicht alle Workflow-Vorteile genutzt. Schlussfolgerung: Aus der Literaturübersicht hinsichtlich Technik, Organbezug und unserer Empfehlung zum Workflow ergibt sich die Forderung an die Industrie, die bildgebenden Modalitäten mit einem Kompressionsfilter auszustatten. Es gilt, dass grundsätzlich pro Bilddatensatz nur einmal komprimiert wird.
Abstract
Purpose: Today healthcare policy is based on effectiveness. Diagnostic imaging became a ”pacesetter” due to amazing technical developments (e. g. multislice CT), extensive data volumes, and especially the well defined workflow-orientated scenarios on a local and (inter)national level. To make centralized networks sufficient, image data compression has been regarded as the key to a simple and secure solution. In February 2008 specialized working groups of the DRG held a consensus conference. They designed recommended data compression techniques and ratios. Material und Methoden: The purpose of our paper is an international review of the literature of compression technologies, different imaging procedures (e. g. DR, CT etc.), and targets (abdomen, etc.) and to combine recommendations for compression ratios and techniques with different workflows. The studies were assigned to 4 different levels (0 – 3) according to the evidence. 51 studies were assigned to the highest level 3. Results: We recommend a compression factor of 1 : 8 (excluding cranial scans 1:5). For workflow reasons data compression should be based on the modalities (CT, etc.). PACS-based compression is currently possible but fails to maximize workflow benefits. Only the modality-based scenarios achieve all benefits. Conclusion: Imaging equipment manufacturers are encouraged to improve the compression technology of their imaging devices (e. g. freely selectable compression ratios in the output filter). Double compression should be strictly avoided. Lossless compression formats should be switched off.
Key words
compression - wavelet - jpeg 2000 - image data - workflow - image device
References
- 1
Braunschweig R, Geis I, Tolksdorf D. et al .
DACS – Data Archiving and Communication Services. Zentrale Archivierung von Krankenhausdaten
– ein ASP-Projekt.
MedR.
2004;
5
353-359
MissingFormLabel
- 2
Braunschweig R, Geis I, Tolksdorf D.
DACS – Zentrale Krankenhausdatenarchivierung und -kommunikation – ein ASP-Konzept.
Telemedizinführer Deutschland.
2005 / 2006;
192-194
MissingFormLabel
- 3
Braunschweig R, Kaden I, Schwarzer J.
Activity Based Costing eines RIS/PACS.
Management und Krankenhaus.
2003;
3
12
MissingFormLabel
- 4
Braunschweig R, Kaden I, Schwarzer J. et al .
Digitalisierung am Klinikum Bergmannstrost – zukunftsweisende Strategien am Beispiel
eines RIS/PACS.
Krankenhaus-IT-Journal.
2003;
5
14-15
MissingFormLabel
- 5
Braunschweig R, Kaden I, Berend A.
Vom RIS/PACS zum MIS/DACS – Eine Effektivitätsstrategie.
Telemedizinführer Deutschland.
2006 / 2007;
157-161
MissingFormLabel
- 6
Breeuwer M, Heusdens R, Gunnewiek R K. et al .
Data compression of x-ray cardio-angiographic image series.
Int J Card Imaging.
1995;
11
179-186
MissingFormLabel
- 7
Moura L, Furuie S S, Gutierrez M A. et al .
Lossy compression techniques, medical images, and the clinician.
MD Comput.
1996;
13
155-159, 172
MissingFormLabel
- 8
Okkalides D, Efremides S.
Quality assessment of DSA, ultrasound and CT digital images compressed with the JPEG
protocol.
Phy Med Biol.
1994;
39
1407-1421
MissingFormLabel
- 9
Tuinenburg J C, Koning G, Hekking E. et al .
American College of Cardiology/European Society of Cardiology International Study
of Angiographic Data Compression Phase II: the effects of varying JPEG data compression
levels on the quantitative assessment of the degree of stenosis in digital coronary
angiography. Joint Photographic Experts Group.
J Am Coll Cardiol.
2000;
35
1380-1387
MissingFormLabel
- 10
Loose R, Braunschweig R, Kotter E. et al .
Kompression Digitaler Bilddaten in der Radiologie-Ergebnisse einer Konsensuskonferenz.
Fortschr Röntgenstr.
2009;
181
32-37
MissingFormLabel
- 11
Azpiroz-Leehan J, Leder R, Lerallut J F.
Quantitative and qualitative evaluation of filter characteristics for wavelet packet
compression of MR images.
Conf Proc IEEE Eng Med Biol Soc.
2004;
2
1537-1540
MissingFormLabel
- 12
Baker W A, Hearne S E, Spero L A. et al .
Lossy (15:1) JPEG compression of digital coronary angiograms does not limit detection
of subtle morphological features.
Circulation.
1997;
96
1157-1164
MissingFormLabel
- 13
Brennecke R, Bürgel U, Simon R. et al .
American College of Cardiology/European Society of Cardiology International Study
of Angiographic Data Compression Phase III: measurement of image quality differences
at varying levels of data compression.
J Am Coll Cardiol.
2000;
35
1388-1397
MissingFormLabel
- 14
Cahill P T, Vullo T, Hu J H. et al .
Radiologist evaluation of a multispectral image compression algorithm for magnetic
resonance images.
J Digit Imaging.
1998;
11
126-136
MissingFormLabel
- 15
Chen T J, Chuang K S, Chiang Y C. et al .
A statistical method for evaluation quality of medical images: a case study in bit
discarding and image compression.
Comput Med Imaging Graph.
2004;
28
167-175
MissingFormLabel
- 16
Cosman P C, Davidson H C, Bergin C J. et al .
Thoracic CT images: effect of lossy image compression on diagnostic accuracy.
Radiology.
1994;
190
517-524
MissingFormLabel
- 17
DeAngelis G A, Dempsey B, Berr S. et al .
Diagnostic efficacy of compressed digitized real-time sonography of uterine fibroids.
Acad Radiol.
1997;
4
83-89
MissingFormLabel
- 18
Eraso F E, Analoui M, Watson A B. et al .
Impact of lossy compression on diagnostic accuracy of radiographs for periapical lesions.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod.
2002;
93
621-625
MissingFormLabel
- 19
Erickson B J, Manduca A, Persons K R. et al .
Evaluation of irreversible compression of digitized posterior-anterior chest radiographs.
J Digit Imaging.
1997;
10
97-102
MissingFormLabel
- 20
Fidler A, Likar B, Pernus F. et al .
Impact of JPEG lossy image compression on quantitative digital subtraction radiography.
Dentomaxillofac Radiol.
2002;
31
106-112
MissingFormLabel
- 21
Fidler A, Likar B, Pernus F. et al .
Comparative evaluation of JPEG and JPEG2000 compression in quantitative digital subtraction
radiography.
Dentomaxillofac Radiol.
2002;
31
379-384
MissingFormLabel
- 22
Frank M S, Lee H, Kim Y. et al .
Evaluation of a combined two- and three-dimensional compression method using human
visual characteristics to yield high-quality 10:1 compression of cranial computed
tomography scans.
Invest Radiol.
1994;
29
842-847
MissingFormLabel
- 23
Goldberg M A, Pivovarov M, Mayo-Smith W W. et al .
Application of wavelet compression to digitized radiographs.
Am J Roentgenol.
1994;
163
463-468
MissingFormLabel
- 24
Goldberg M A, Gazelle G S, Boland G W. et al .
Focal hepatic lesions: effect of three-dimensional wavelet compression on detection
at CT.
Radiology.
1997;
202
159-165
MissingFormLabel
- 25
Halpern E J, Levy H M, Newhouse J H. et al .
Quadtree-based data compression of abdominal CT images.
Invest Radiol.
1990;
25
31-38
MissingFormLabel
- 26
Janhom A, Stelt P F, Sanderink G C.
A comparison of two compression algorithms and the detection of caries.
Dentomaxillofac Radiol.
2002;
31
257-263
MissingFormLabel
- 27
Kalyanpur van der A, Neklesa V P, Taylor C R. et al .
Evaluation of JPEG and wavelet compression of body CT images for direct digital teleradiologic
transmission.
Radiology.
2000;
217
772-779
MissingFormLabel
- 28
Karson T H, Chandra S, Morehead A J. et al .
JPEG compression of digital echocardiographic images: impact on image quality.
J Am Soc Echocardiogr.
1995;
8
306-318
MissingFormLabel
- 29
Kerensky R A, Cusma J T, Kubilis P. et al .
American College of Cardiology/European Society of Cardiology international study
of angiographic data compression phase I. The effects of lossy data compression on
recognition of diagnostic features in digital coronary angiography.
Eur Heart J.
2000;
21
668-678
MissingFormLabel
- 30
Kihara Y.
Evaluation of diagnostic accuracy of CRT monitor display for personal computer in
the detection of small lung nodules: with particular emphasis on comparison between
JPEG and wavelet compression (Article in Japanese).
Nippon Igaku Hoshasen Gakkai Zasshi.
2001;
61
231-237
MissingFormLabel
- 31
Ko J P, Chang J, Bomsztyk E. et al .
Effect of CT image compression on computer-assisted lung nodule volume measurement.
Radiology.
2005;
237
83-88 (Epub 2005 Aug 26)
MissingFormLabel
- 32
Ko J P, Rusinek H, Naidich D P. et al .
Wavelet compression of low-dose chest CT data: effect on lung nodule detection.
Radiology.
2003;
228
70-75 (Epub 2003 May 29)
MissingFormLabel
- 33
Kocsis O, Costaridou L, Varaki L. et al .
Visually lossless threshold determination for microcalcification detection in wavelet
compressed mammograms.
Eur Radiol.
2003;
13
2390-2396 (Epub 2003 Feb 15)
MissingFormLabel
- 34
Kondo Y.
Medical image transfer for emergency care utilizing internet and mobile phone.
Nippon Hoshasen Gijutsu Gakkai Zasshi.
2002;
58
1393-1401
MissingFormLabel
- 35
Koning G, Béretta P, Zwart P. et al .
Effect of lossy data compression on quantitative coronary measurements.
Int J Card Imaging.
1997;
13
261-270
MissingFormLabel
- 36
Kotter E, Roesner A, Torsten Winterer J. et al .
Evaluation of Lossy data compression of chest X-rays: a receiver operating characteristic
study.
Invest Radiol.
2003;
38
243-249
MissingFormLabel
- 37
Lee K H, Kim Y H, Kim B H. et al .
Irreversible JPEG 2000 compression of a abdominal CT for primary interpretation: assessment
of visually lossless threshold.
Eur Radiol.
2007;
17
1529-1534 (Epub 2006 Nov 22)
MissingFormLabel
- 38
Li F, Sone S, Takashima S. et al .
Effects of JPEG and wavelet compression of spiral low-dose ct images on detection
of small lung cancers.
Acta Radiol.
2001;
42
156-160
MissingFormLabel
- 39
Megibow A J, Rusinek H, Lisi V. et al .
Computed tomography diagnosis utilizing compressed image data: an ROC analysis using
acute appendicitis as a model.
J Digit Imaging.
2002;
15
84-90 (Epub 2002 Sep 26)
MissingFormLabel
- 40
Ohgiya Y, Gokan T, Nobusawa H. et al .
Acute cerebral infarction: effect of JEPG compression on detection at CT.
Radiology.
2003;
227
124-127 (Epub 2003 Feb 19)
MissingFormLabel
- 41
Penedo M, Souto M, Tahoces P G. et al .
Free-response receiver operating characteristic evaluation of lossy JPEG2000 and object-based
set partitioning in hierarchical trees compression of digitized mammograms.
Radiology.
2005;
237
450-457
MissingFormLabel
- 42
Persons K R, Hangiandreou N J, Charboneau N T. et al .
Evaluation of irreversible JPEG compression for a clinical ultrasound practice.
J Digit Imaging.
2002;
15
15-21 (Epub 2002 Apr 30)
MissingFormLabel
- 43
Ricke J, Maass P, Lopez Hänninen E. et al .
Wavelet versus JPEG (Joint Photographic Expert Group) and fractal compression. Impact
on the detection of low-contrast details in computed radiographs.
Invest Radiol.
1998;
33
456-463
MissingFormLabel
- 44
Ringl H, Schernthaner R E, Kulinna-Cosentini C. et al .
Lossy Three-dimensional JPEG2000 Compression of Abdominal CT Images: Assessment of
the Visually Lossless Threshold and Effect of Compression Ratio on Image Quality.
Radiology.
2007;
Epub ahead of print
MissingFormLabel
- 45
Ringl H, Schernthaner R E, Bankier A A. et al .
JPEG2000 compression of thin-section CT images of the lung: effect of compression
ratio on image quality.
Radiology.
2006;
240
869-877 (Epub 2006 Jul 25)
MissingFormLabel
- 46
Savcenko V, Erickson B J, Persons K R. et al .
An evaluation of JPEG and JPEG 2000 irreversible compression algorithms applied to
neurologic computed tomography and magnetic resonance images. Joint Photographic Experts
Group.
J Digit Imaging.
2000;
13
183-185
MissingFormLabel
- 47
Savcenko V, Erickson B J, Persons K R. et al .
An evaluation of JPEG and JPEG 2000 irreversible compression algorithms applied to
neurologic computed tomography and magnetic resonance images. Joint Photographic Experts
Group.
J Digit Imaging.
2000;
13
183-185
MissingFormLabel
- 48
Slone R M, Foos D H, Whiting B R. et al .
Assessment of visually lossless irreversible image compression: comparison of three
methods by using an image-comparison workstation.
Radiology.
2000;
215
543-553
MissingFormLabel
- 49
Slone R M, Muka E, Pilgram T K.
Irreversible JPEG compression of digital chest radiographs for primary interpretation:
assessment of visually lossless threshold.
Radiology.
2003;
228
425-429
MissingFormLabel
- 50
Sung M M, Kim H J, Yoo S K. et al .
Clinical evaluation of compression ratios using JPEG2000 on computed radiography chest
images.
J Digit Imaging.
2002;
15
78-83 (Epub 2002 Sep 26)
MissingFormLabel
- 51
Suryanarayanan S, Karellas A, Vedantham S. et al .
A perceptual evaluation of JPEG 2000 image compression for digital mammography: contrast-detail
characteristics.
J Digit Imaging.
2004;
17
64-70
MissingFormLabel
- 52
Toney M O, Dominguez R, Dao H N. et al .
The effect of lossy discrete cosine transform compression on subtle bone fractures.
J Digit Imaging.
1997;
10
169-173
MissingFormLabel
- 53
Tuinenburg J C, Koning G, Hekking E. et al .
American College of Cardiology/European Society of Cardiology international study
of angiographic data compression phase II. The effects of varying JPEG data compression
levels on the quantitative assessment of the degree of stenosis in digital coronary
angiography.
Eur Heart J.
2000;
21
679-686
MissingFormLabel
- 54
Woo H S, Kim K J, Kim T J. et al .
JPEG 2000 compression of abdominal CT: difference in tolerance between thin- and thick-section
images.
Am J Roentgenol.
2007;
189
535-541
MissingFormLabel
- 55
Yamamoto S, Johkoh T, Mihara N. et al .
Evaluation of compressed lung CT image quality using quantitative analysis.
Radiat Med.
2001;
19
321-329
MissingFormLabel
- 56
Yin F F, Gao Q.
Oncolgic image compression using both waveletand maskin techniques.
Med Phys.
1997;
24
2038-2042
MissingFormLabel
- 57
Zalis M E, Hahn P F, Arellano R S. et al .
CT colonography with teleradiology: effect of lossy wavelet compression on polyp detection
– initial observations.
Radiology.
2001;
220
387-392
MissingFormLabel
- 58
Zheng L M, Sone S, Itani Y. et al .
Effect of CT digital image compression on detection of coronary artery calcification.
Acta Radiol.
2000;
41
116-121
MissingFormLabel
Dr. Ingmar Kaden
Klinik für Bildgebende Diagnostik und Interventionsradiologie, BG-Kliniken Bergmannstrost
Halle
Merseburger Straße 165
06112 Halle
Germany
Telefon: ++ 49/3 45/1 32 61 84
Fax: ++ 49/3 45/1 32 61 86
eMail: Ingmar.Kaden@Bergmannstrost.com