Abstract
A nontoxic dose of Sambucol, an immunomodulator commercially sold as an immune stimulator,
was examined in murine models of leishmaniasis and malaria. Sambucol causes a shift
in the immune response, as demonstrated in human monocyte cultures, to Th1 (inflammation-associated)
responses. Treatment of leishmania-infected mice with Sambucol delayed the development
of the disease. As there was no direct in vitro anti-leishmanial effect, the observed partial protection in vivo is most likely related to immune modulation. Although increased Th1 responses are
associated with protection from leishmaniasis, they are considered to be the main
immunopathological processes leading to cerebral malaria. Administration of Sambucol
to mice prior to and following infection with Plasmodium berghei ANKA increased the incidence of cerebral malaria, while administration of Sambucol
after infection had no effect on the disease. The results demonstrate how an inflammatory-like
response may alleviate or exacerbate clinical symptoms of disease and hint at the
importance of administration timing. The overall effect of immunomodulator administration
depends on the ongoing immune response and the Th1/Th2 balance determined by both
host and parasite defense mechanisms.
Key words
malaria - leishmaniasis - Sambucol -
Sambucus nigra L. (Sambucaceae) - immunomodulation - cytokines
References
1
Jones T C.
Immunomodulation – an idea from the past looks more promising than ever.
Braz J Infect Dis.
2001;
5
233-234
2
Ramos-Avila A, Ventura-Gallegos J L, Zentella-Dehesa A, Machuca-Rodríguez C, Moreno-Altamirano M M,
Narváez V, Legorreta-Herrera M.
Immunomodulatory role of chloroquine and pyrimethamine in Plasmodium yoelii 17XL infected mice.
Scand J Immunol.
2007;
65
54-62
3
Brode S, Cooke A.
Immune-potentiating effects of the chemotherapeutic drug cyclophosphamide.
Crit Rev Immunol.
2008;
2
109-126
4
Mansueto P, Vitale G, Di Lorenzo G, Rini G B, Mansueto S, Cillari E.
Immunopathology of leishmaniasis: an update.
Int J Immunopathol Pharmacol.
2007;
20
435-445
5
Hunt N H, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, Medana I M, Miu J, Ball H J.
Immunopathogenesis of cerebral malaria.
Int J Parasitol.
2006;
36
569-582
6
Malaguarnera L, Musumeci S.
The immune response to Plasmodium falciparum malaria.
Lancet Infect Dis.
2002;
8
472-478
7
Binka F N, Morris S S, Ross D A, Arthur P, Aryeetey M E.
Patterns of malaria morbidity and mortality in children in northern Ghana.
Trans R Soc Trop Med Hyg.
1994;
4
381-385
8
Elhassan I M, Hviid L, Jakobsen P H, Giha H, Satti G M, Arnot D E, Jensen J B, Theander T G.
High proportion of subclinical Plasmodium falciparum infections in an area of seasonal and unstable malaria in Sudan.
Am J Trop Med Hyg.
1995;
53
78-83
9
Mayanja-Kizza H.
Clinical expression of malaria: why Mary and not John.
Malaria Infection in Africa.
1995;
2
26-30
10
Modiano D, Petrarca V, Sirima B S, Nebie I, Diallo D, Esposito F, Coluzzi M.
Different response to Plasmodium falciparum malaria in west African sympatric ethnic groups.
Proc Natl Acad Sci.
1996;
93
13206-13211
11
Bradley D J, Taylor B A, Blackwell J, Evans E P, Freeman J.
Regulation of Leishmania populations within the host III. Mapping of the locus controlling susceptibility
to visceral leishmaniasis in the mouse.
Clin Exp Immunol.
1979;
37
7-14
12
Peruhype-Magalhaes V, Martins-Filho O A, Prata A, Silva Lde A, Rabello A, Teixeira-Carvalho A,
Ferrari T C, Correa-Oliveira R.
Immune response in human visceral leishmaniasis: analysis of the correlation between
innate immunity cytokine profile and disease outcome.
Scand J Immunol.
2005;
5
487-495
13
Sacks D L, Noben-Trauth N.
The immunology of susceptibility and resistance to Leishmania major in mice.
Nat Rev Immunol.
2002;
2
845-858
14
Soares Rocha F J, Schleicher U, Mattner J, Alber G, Bogdan C.
Cytokines, signaling pathways, and effector molecules required for the control of
Leishmania (Viannia ) braziliensis in mice.
Infect Immun.
2007;
75
3823-3832
15
Golenser J, McQuillan J, Hee L, Mitchell A J, Hunt N H.
Conventional and experimental treatment of cerebral malaria.
Int J Parasitol.
2006;
36
583-593
16
von Stebut E, Udey M C.
Requirements for Th1-dependent immunity against infection with L. major .
Microbes Infect.
2004;
6
1102-1109
17
Chan M M, Adapala N S, Fong D.
Curcumin overcomes the inhibitory effect of nitric oxide on Leishmania.
Parasitol Res.
2005;
96
49-56
18
Park A Y, Hondovicz B, Kopf M, Scott P.
The role of IL‐12 in maintaining resistance to Leishmania major .
J Immunol.
2002;
168
5771-5777
19
Rocha F J, Schleicher U, Mattner J, Alber G, Bogdan C.
Cytokines, signaling pathways, and effector molecules required for the control of
Leishmania (Viannia) braziliensis in mice.
Infect Immun.
2007;
8
3823-3832
20
Zimmermann S, Dalpke A, Heeg K.
CpG oligonucleotides as adjuvant in therapeutic vaccines against parasitic infections.
Int J Med Microbiol.
2008;
298
39-44
21
Barak V, Birkenfeld S, Halperin T, Kalickman I.
The effect of herbal remedies on the production of human inflammatory and anti-inflammatory
cytokines.
Isr Med Assoc J.
2002;
4
919-922
22
Zakay-Rones Z, Varsano N, Zlotnik M, Manor O, Regev L, Schlesinger M, Mumcuoglu M.
Inhibition of several strains of influenza virus in vitro and reduction of symptoms by an elderberry extract (Sambucus nigra L.) during an outbreak of influenza B Panama.
J Altern Complement Med.
1995;
1
361-369
23 Alberte R S, Gow R T, Sypert G W, Li D. Extractions and methods comprising elder
species. Patent application. Patent application. Available at: http://appft1.uspto.gov.
Accessed June 20, 2008
24
Golenser J, Frankenburg S, Ehrenfreund T, Domb A J.
Efficacious treatment of experimental leishmaniasis with amphotericin B-arabinogalactan
water-soluble derivatives.
Antimicrob Agents Chemother.
1999;
43
2209-2214
25
Avnir Y, Ulmansky R, Wasserman V, Even-Chen S, Broyer M, Barenholz Y, Naparstek Y.
Amphipathic weak acid glucocorticoid prodrugs remote-loaded into sterically stabilized
nanoliposomes evaluated in arthritic rats and in a Beagle dog: a novel approach to
treating autoimmune arthritis.
Arthritis Rheum.
2008;
58
119-129
26 Waknine-Grinberg J H, Barenholz Y, Barhum K, Avnir Y, Haynes R K, Golenser J. Glucocorticosteroids
encapsulated in sterically stabilized nano-liposomes are therapeutically efficacious
against murine cerebral malaria. (In preparation)
27
Barak V, Halperin T, Kalickman I.
The effect of Sambucol, a black elderberry-based, natural product, on the production
of human cytokines: I. Inflammatory cytokines.
Eur Cytokine Netw.
2001;
12
290-296
28
Aguilar-Torrentera F, Carlier Y.
Immunological factors governing resistance and susceptibility of mice to Leishmania major infection.
Rev Latinoam Microbiol.
2001;
43
135-142
29
Hunt N, Grau G.
Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria.
Trends Immunol.
2003;
24
491-499
30
Nie C Q, Bernard N J, Schofield L, Hansen D S.
CD4+ CD25+ regulatory T cells suppress CD4+ T-cell function and inhibit the development
of Plasmodium berghei -specific TH1 responses involved in cerebral malaria pathogenesis.
Infect Immun.
2007;
75
2275-2282
Jacob Golenser
Department of Parasitology The Hebrew University of Jerusalem
Jerusalem 91020
Israel
Telefon: + 97 2 26 75 80 90
Fax: + 97 2 26 75 74 25
eMail: golenser@md.huji.ac.il