Subscribe to RSS
DOI: 10.1055/s-0029-1185357
© Georg Thieme Verlag KG Stuttgart · New York
The Immunomodulatory Effect of Sambucol on Leishmanial and Malarial Infections
Publication History
received August 13, 2008
revised Dec. 29, 2008
accepted January 6, 2009
Publication Date:
12 February 2009 (online)
Abstract
A nontoxic dose of Sambucol, an immunomodulator commercially sold as an immune stimulator, was examined in murine models of leishmaniasis and malaria. Sambucol causes a shift in the immune response, as demonstrated in human monocyte cultures, to Th1 (inflammation-associated) responses. Treatment of leishmania-infected mice with Sambucol delayed the development of the disease. As there was no direct in vitro anti-leishmanial effect, the observed partial protection in vivo is most likely related to immune modulation. Although increased Th1 responses are associated with protection from leishmaniasis, they are considered to be the main immunopathological processes leading to cerebral malaria. Administration of Sambucol to mice prior to and following infection with Plasmodium berghei ANKA increased the incidence of cerebral malaria, while administration of Sambucol after infection had no effect on the disease. The results demonstrate how an inflammatory-like response may alleviate or exacerbate clinical symptoms of disease and hint at the importance of administration timing. The overall effect of immunomodulator administration depends on the ongoing immune response and the Th1/Th2 balance determined by both host and parasite defense mechanisms.
Key words
malaria - leishmaniasis - Sambucol - Sambucus nigra L. (Sambucaceae) - immunomodulation - cytokines
- Supporting Information for this article is available online at
- Supporting Information .
References
- 1 Jones T C. Immunomodulation – an idea from the past looks more promising than ever. Braz J Infect Dis. 2001; 5 233-234
- 2 Ramos-Avila A, Ventura-Gallegos J L, Zentella-Dehesa A, Machuca-Rodríguez C, Moreno-Altamirano M M, Narváez V, Legorreta-Herrera M. Immunomodulatory role of chloroquine and pyrimethamine in Plasmodium yoelii 17XL infected mice. Scand J Immunol. 2007; 65 54-62
- 3 Brode S, Cooke A. Immune-potentiating effects of the chemotherapeutic drug cyclophosphamide. Crit Rev Immunol. 2008; 2 109-126
- 4 Mansueto P, Vitale G, Di Lorenzo G, Rini G B, Mansueto S, Cillari E. Immunopathology of leishmaniasis: an update. Int J Immunopathol Pharmacol. 2007; 20 435-445
- 5 Hunt N H, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, Medana I M, Miu J, Ball H J. Immunopathogenesis of cerebral malaria. Int J Parasitol. 2006; 36 569-582
- 6 Malaguarnera L, Musumeci S. The immune response to Plasmodium falciparum malaria. Lancet Infect Dis. 2002; 8 472-478
- 7 Binka F N, Morris S S, Ross D A, Arthur P, Aryeetey M E. Patterns of malaria morbidity and mortality in children in northern Ghana. Trans R Soc Trop Med Hyg. 1994; 4 381-385
- 8 Elhassan I M, Hviid L, Jakobsen P H, Giha H, Satti G M, Arnot D E, Jensen J B, Theander T G. High proportion of subclinical Plasmodium falciparum infections in an area of seasonal and unstable malaria in Sudan. Am J Trop Med Hyg. 1995; 53 78-83
- 9 Mayanja-Kizza H. Clinical expression of malaria: why Mary and not John. Malaria Infection in Africa. 1995; 2 26-30
- 10 Modiano D, Petrarca V, Sirima B S, Nebie I, Diallo D, Esposito F, Coluzzi M. Different response to Plasmodium falciparum malaria in west African sympatric ethnic groups. Proc Natl Acad Sci. 1996; 93 13206-13211
- 11 Bradley D J, Taylor B A, Blackwell J, Evans E P, Freeman J. Regulation of Leishmania populations within the host III. Mapping of the locus controlling susceptibility to visceral leishmaniasis in the mouse. Clin Exp Immunol. 1979; 37 7-14
- 12 Peruhype-Magalhaes V, Martins-Filho O A, Prata A, Silva Lde A, Rabello A, Teixeira-Carvalho A, Ferrari T C, Correa-Oliveira R. Immune response in human visceral leishmaniasis: analysis of the correlation between innate immunity cytokine profile and disease outcome. Scand J Immunol. 2005; 5 487-495
- 13 Sacks D L, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol. 2002; 2 845-858
- 14 Soares Rocha F J, Schleicher U, Mattner J, Alber G, Bogdan C. Cytokines, signaling pathways, and effector molecules required for the control of Leishmania (Viannia) braziliensis in mice. Infect Immun. 2007; 75 3823-3832
- 15 Golenser J, McQuillan J, Hee L, Mitchell A J, Hunt N H. Conventional and experimental treatment of cerebral malaria. Int J Parasitol. 2006; 36 583-593
- 16 von Stebut E, Udey M C. Requirements for Th1-dependent immunity against infection with L. major. Microbes Infect. 2004; 6 1102-1109
- 17 Chan M M, Adapala N S, Fong D. Curcumin overcomes the inhibitory effect of nitric oxide on Leishmania. Parasitol Res. 2005; 96 49-56
- 18 Park A Y, Hondovicz B, Kopf M, Scott P. The role of IL‐12 in maintaining resistance to Leishmania major. J Immunol. 2002; 168 5771-5777
- 19 Rocha F J, Schleicher U, Mattner J, Alber G, Bogdan C. Cytokines, signaling pathways, and effector molecules required for the control of Leishmania (Viannia) braziliensis in mice. Infect Immun. 2007; 8 3823-3832
- 20 Zimmermann S, Dalpke A, Heeg K. CpG oligonucleotides as adjuvant in therapeutic vaccines against parasitic infections. Int J Med Microbiol. 2008; 298 39-44
- 21 Barak V, Birkenfeld S, Halperin T, Kalickman I. The effect of herbal remedies on the production of human inflammatory and anti-inflammatory cytokines. Isr Med Assoc J. 2002; 4 919-922
- 22 Zakay-Rones Z, Varsano N, Zlotnik M, Manor O, Regev L, Schlesinger M, Mumcuoglu M. Inhibition of several strains of influenza virus in vitro and reduction of symptoms by an elderberry extract (Sambucus nigra L.) during an outbreak of influenza B Panama. J Altern Complement Med. 1995; 1 361-369
-
23 Alberte R S, Gow R T, Sypert G W, Li D. Extractions and methods comprising elder species. Patent application. Patent application. Available at: http://appft1.uspto.gov. Accessed June 20, 2008
- 24 Golenser J, Frankenburg S, Ehrenfreund T, Domb A J. Efficacious treatment of experimental leishmaniasis with amphotericin B-arabinogalactan water-soluble derivatives. Antimicrob Agents Chemother. 1999; 43 2209-2214
- 25 Avnir Y, Ulmansky R, Wasserman V, Even-Chen S, Broyer M, Barenholz Y, Naparstek Y. Amphipathic weak acid glucocorticoid prodrugs remote-loaded into sterically stabilized nanoliposomes evaluated in arthritic rats and in a Beagle dog: a novel approach to treating autoimmune arthritis. Arthritis Rheum. 2008; 58 119-129
-
26 Waknine-Grinberg J H, Barenholz Y, Barhum K, Avnir Y, Haynes R K, Golenser J. Glucocorticosteroids encapsulated in sterically stabilized nano-liposomes are therapeutically efficacious against murine cerebral malaria. (In preparation)
- 27 Barak V, Halperin T, Kalickman I. The effect of Sambucol, a black elderberry-based, natural product, on the production of human cytokines: I. Inflammatory cytokines. Eur Cytokine Netw. 2001; 12 290-296
- 28 Aguilar-Torrentera F, Carlier Y. Immunological factors governing resistance and susceptibility of mice to Leishmania major infection. Rev Latinoam Microbiol. 2001; 43 135-142
- 29 Hunt N, Grau G. Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol. 2003; 24 491-499
- 30 Nie C Q, Bernard N J, Schofield L, Hansen D S. CD4+ CD25+ regulatory T cells suppress CD4+ T-cell function and inhibit the development of Plasmodium berghei-specific TH1 responses involved in cerebral malaria pathogenesis. Infect Immun. 2007; 75 2275-2282
Jacob Golenser
Department of Parasitology
The Hebrew University of Jerusalem
Jerusalem 91020
Israel
Phone: + 97 2 26 75 80 90
Fax: + 97 2 26 75 74 25
Email: golenser@md.huji.ac.il
- www.thieme-connect.de/ejournals/toc/plantamedica