Planta Med 2009; 75(12): 1326-1330
DOI: 10.1055/s-0029-1185687
Pharmacology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Antimycobacterial Activity of Exocarpos latifolius is due to Exocarpic Acid

Michael Koch1 , Tim S. Bugni2 , Chris D. Pond1 , Mohammad Sondossi3 , Manah Dindi4 , Pius Piskaut5 , Chris M. Ireland2 , Louis R. Barrows1
  • 1Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
  • 2Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
  • 3Department of Microbiology, Weber State University, Ogden, Utah, USA
  • 4Discipline of Pharmacy, School of Medicine and Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea, N. C. D.
  • 5Discipline of Botany, School of Natural and Physical Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea, N. C. D.
Further Information

Publication History

received Nov. 11, 2008 revised March 12, 2009

accepted March 21, 2009

Publication Date:
14 May 2009 (online)

Abstract

Lipophilic fractions of stem extracts from Exocarpos latifolius, native to Papua New Guinea, showed significant activity against Mycobacterium tuberculosis H37Ra. Bioactivity-guided fractionation yielded exocarpic acid (E-octadeca-13-ene-9,11-diynoic-acid) as the major active component. Several new exocarpic acid analogs were also shown to be active. Exocarpic acid has previously been reported active against gram-positive, but not gram-negative bacteria. Work presented here demonstrates the selective activity of exocarpic acid against Mycobacterium tuberculosis H37Ra.

References

  • 1 International Cooperative Biodiversity Groups (ICBG). Available at http://www.fic.nih.gov/programs/research_grants/icbg/. Accessed October 15, 2008
  • 2 TB Country Profile Papua New Guinea. Available at http://www.who.int/globalatlas/predefinedReports/TB/PDF_Files/png.pdf. Accessed October 15, 2008
  • 3 El-Jaber N A, Estevez-Braun A G, Munoz-Munoz R O, Rodrıguez-Alfonso A, Murguia J R. Acetylenic acids from the aerial parts of Nanodea muscos.  J Nat Prod. 2003;  66 722-724
  • 4 Naidoo L AC, Drewes S E, Van Staden J, Hutchings A. Exocarpic acid and other compounds from tubers and inflorescences of Sarcophyte sanguinea.  Phytochemistry. 1992;  31 3929-3931
  • 5 Li X-C, Jacob M R, Khan S I, Ashfaq M K, Babu K S, Agarwal A K, El Sohly H N, Manly S P, Clark A M. Potent in vitro antifungal activities of naturally occurring acetylenic acids.  Antimicrob Agents Chemother. 2008;  52 2442-2448
  • 6 Zgoda J R, Freyer A J, Killmer L B, Porter J R. Polyacetylene carboxylic acids from Mitrephora celebica.  J Nat Prod. 2001;  64 1348-1349
  • 7 Kobaisy M, Abramowski Z, Lermer L, Saxena G, Hancock R EW, Towers G HN. Antimycobacterial polyynes of Devil's club (Oplopanax horridus), a North American native medicinal plant.  J Nat Prod. 1997;  60 1210-1213
  • 8 Naidoo L AC, Drewes S E, Drewes F E, Van Staden J, Aken M E. When is a parasite no longer a parasite? The case of Sarcophyte sanguinea and exocarpic acid.  South African J Sci. 1994;  90 359-361
  • 9 Franzblau S G, Witzig R S, McLaughlin J C, Torres P, Madico G, Hernandez A, Degnan M T, Cook M B, Quenzer V K, Ferguson R M, Gilman R H. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate alamar blue assay.  J Clin Microbiol. 1998;  36 362-366
  • 10 Foongladda S, Roengsanthia D, Arjrattanakool W, Chuchottaworn C, Chaiprasert A, Franzblau S G. Rapid and simple MTT method for rifampicin and isoniazid susceptibility testing of Mycobacterium tuberculosis.  Int J Tuberc Lung Dis. 2002;  6 1118-1122
  • 11 Ferraro M J, Craig W A, Dudley M N, Eliopoulos G M, Hecht D W, Hindler J, Reller L B, Shelodon A T, Swenson J M, Tenover F C, Testa R T, Weinstein M P, Wikler M A. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 5th edition. Wayne; NCCLS 2000
  • 12 Amakura Y, Kondo K, Akiyama H, Ito H, Hatano T, Yoshida T, Tamio M. Characteristic long-chain fatty acid of Pleurocybella porrigens.  J Food Hyg Soc Jap. 2006;  47 178-181
  • 13 Badami R C, Gunstone F D. Vegetable oils. XIII – The component acids of isano (boleko) oil.  J Sci Food Agric. 1963;  14 863-866
  • 14 The Tuberculosis Antimicrobial Acquisition and Coordinating Facility. Available at http://www.taacf.org. Accessed October 15, 2008
  • 15 Collins L A, Franzblau S G. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium.  Antimicrob Agents Chemother. 1997;  41 1004-1009
  • 16 Cho H S, Warit S, Wan B, Hwang C H, Pauli G E, Franzblau S G. Low oxygen recovery assay (LORA) for high throughput screening of compounds against non-replicating Mycobacterium tuberculosis.  Antimicrob Agents Chemother. 2007;  51 1380-1385
  • 17 Morbidoni C, Vilchèze L, Kremer R, Bittman J, Sacchettini W, Jacobs J R. Dual inhibition of mycobacterial fatty acid biosynthesis and degradation by 2-alkynoic acids.  Chem Biol. 2006;  13 297-307
  • 18 Wu L, Liu Z, Li D. Oct-2-yn-4-enoyl-CoA as a multifunctional enzyme inhibitor in fatty acid oxidation.  Org Lett. 2008;  10 2235-2238
  • 19 Ondeyka J, Zink D, Young K, Painter R, Kodali S, Galgoci A, Collado J, Tormo J R, Basilio A, Vicente F, Wang J, Singh S B. Discovery of bacterial fatty acid synthase inhibitors from a Phoma species as antimicrobial agents using a new antisense-based strategy.  J Nat Prod. 2006;  69 377-380

Prof. Dr. Louis R. Barrows

Department of Pharmacology and Toxicology
University of Utah

30 S., 2000 E.

Salt Lake City, UT 84112

USA

Phone: + 1 80 15 81 45 47

Email: louis.barrows@pharm.utah.edu