Semin Thromb Hemost 2009; 35(1): 042-049
DOI: 10.1055/s-0029-1214147
© Thieme Medical Publishers

Pharmacogenetics in Hemostasis: Friend or Foe?

Kandelaria Rumilla1 , Dong Chen1 , Linnea M. Baudhuin1
  • 1Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
Further Information

Publication History

Publication Date:
23 March 2009 (online)

ABSTRACT

Pharmacologic therapies are essential in the management of patients with hemostatic and thrombotic diseases because these therapies are able to modify components of the coagulation pathway and platelet response. Nevertheless, responses to different drugs vary significantly, and the best clinical outcome frequently involves a delicate risk/benefit balance. The recent exponential growth of pharmacogenomics has led to the emergence of individualized medicine that has revolutionized modern medical practice, allowing for a deeper understanding of pathophysiology, increased diagnostic specificity, and better markers for risk stratification and an enhanced potential for gene therapy. Management of drugs prescribed to treat thrombotic and hemostatic abnormalities may benefit from pharmacogenetics, and our focus in this review will be on the pharmacogenetics related to some of the more common drugs that fall into this category.

REFERENCES

  • 1 CAPRIE Steering Committee . A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE).  Lancet. 1996;  348 1329-1339
  • 2 Diener H-C, Bogousslavsky J, Brass L M et al.. Management of atherothrombosis with clopidogrel in high-risk patients with recent transient ischaemic attack or ischaemic stroke (MATCH): study design and baseline data.  Cerebrovasc Dis. 2004;  17 253-261
  • 3 Fox K AA, Mehta S R, Peters R et al.. Benefits and risks of the combination of clopidogrel and aspirin in patients undergoing surgical revascularization for non-ST-elevation acute coronary syndrome: the Clopidogrel in Unstable angina to prevent Recurrent ischemic Events (CURE) Trial.  Circulation. 2004;  110 1202-1208
  • 4 Savi P, Herbert J-M. Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis.  Semin Thromb Hemost. 2005;  31 174-183
  • 5 Angiolillo D J, Fernandez-Ortiz A, Bernardo E et al.. Variability in individual responsiveness to clopidogrel: clinical implications, management, and future perspectives.  J Am Coll Cardiol. 2007;  49 1505-1516
  • 6 Gurbel P A, Bliden K P, Hiatt B L, O'Connor C M. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity.  Circulation. 2003;  107 2908-2913
  • 7 Michelson A D, Linden M D, Furman M I et al.. Evidence that pre-existent variability in platelet response to ADP accounts for 'clopidogrel resistance.'  J Thromb Haemost. 2007;  5 75-81
  • 8 Lau W C, Gurbel P A, Watkins P B et al.. Contribution of hepatic cytochrome P450 3A4 metabolic activity to the phenomenon of clopidogrel resistance.  Circulation. 2004;  109 166-171
  • 9 Lau W C, Waskell L A, Watkins P B et al.. Atorvastatin reduces the ability of clopidogrel to inhibit platelet aggregation: a new drug-drug interaction.  Circulation. 2003;  107 32-37
  • 10 Umemura K, Furuta T, Kondo K. The common gene variants of CTP2C19 affect pharmacokinetics and pharmacodynmics in an active metabolite of clopidogrel in healthy subjects.  J Thromb Haemost. 2008;  6 1439-1441
  • 11 Hulot J S, Bura A, Villard E et al.. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects.  Blood. 2006;  108 2244-2247
  • 12 Brandt J T, Close S L, Iturria S J et al.. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel.  J Thromb Haemost. 2007;  5 2429-2436
  • 13 Beitelshees A L, McLeod H L. Clopidogrel pharmacogenetics: promising steps towards patient care?.  Arterioscler Thromb Vasc Biol. 2006;  26 1681-1683
  • 14 Conley P B, Delaney S M. Scientific and therapeutic insights into the role of the platelet P2Y12 receptor in thrombosis.  Curr Opin Hematol. 2003;  10 333-338
  • 15 Hollopeter G, Jantzen H M, Vincent D et al.. Identification of the platelet ADP receptor targeted by antithrombotic drugs.  Nature. 2001;  409 202-207
  • 16 von Beckerath N, von Beckerath O, Koch W et al.. P2Y12 gene H2 haplotype is not associated with increased adenosine diphosphate-induced platelet aggregation after initiation of clopidogrel therapy with a high loading dose.  Blood Coagul Fibrinolysis. 2005;  16 199-204
  • 17 Fontana P, Gaussem P, Aiach M et al.. P2Y12 H2 haplotype is associated with peripheral arterial disease: a case-control study.  Circulation. 2003;  108 2971-2973
  • 18 Bura A, Bachelot-Loza C, Ali F D, Aiach M, Gaussem P. Role of the P2Y12 gene polymorphism in platelet responsiveness to clopidogrel in healthy subjects.  J Thromb Haemost. 2006;  4 2096-2097
  • 19 Fontana P, Dupont A, Gandrille S et al.. Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects.  Circulation. 2003;  108 989-995
  • 20 Lev E I, Patel R T, Guthikonda S et al.. Genetic polymorphisms of the platelet receptors P2Y(12), P2Y(1) and GP IIIa and response to aspirin and clopidogrel.  Thromb Res. 2007;  119 355-360
  • 21 Angiolillo D J, Fernandez-Ortiz A, Bernardo E et al.. Lack of association between the P2Y12 receptor gene polymorphism and platelet response to clopidogrel in patients with coronary artery disease.  Thromb Res. 2005;  116 491-497
  • 22 Angiolillo D J, Fernandez-Ortiz A, Bernardo E et al.. PlA polymorphism and platelet reactivity following clopidogrel loading dose in patients undergoing coronary stent implantation.  Blood Coagul Fibrinolysis. 2004;  15 89-93
  • 23 Cooke G E, Liu-Stratton Y, Ferketich A K et al.. Effect of platelet antigen polymorphism on platelet inhibition by aspirin, clopidogrel, or their combination.  J Am Coll Cardiol. 2006;  47 541-546
  • 24 Angiolillo D J, Fernandez-Ortiz A, Bernardo E et al.. 807 C/T Polymorphism of the glycoprotein Ia gene and pharmacogenetic modulation of platelet response to dual antiplatelet treatment.  Blood Coagul Fibrinolysis. 2004;  15 427-433
  • 25 Awtry E H, Loscalzo J. Aspirin.  Circulation. 2000;  101 1206-1218
  • 26 Lev E I, Patel R T, Maresh K J et al.. Aspirin and clopidogrel drug response in patients undergoing percutaneous coronary intervention: the role of dual drug resistance.  J Am Coll Cardiol. 2006;  47 27-33
  • 27 Gum P A, Kottke-Marchant K, Welsh P A, White J, Topol E J. A prospective, blinded determination of the natural history of aspirin resistance among stable patients with cardiovascular disease.  , [Erratum in: J Am Coll Cardiol 2006;48:1918] J Am Coll Cardiol. 2003;  41 961-965
  • 28 Gum P A, Kottke-Marchant K, Poggio E D et al.. Profile and prevalence of aspirin resistance in patients with cardiovascular disease.  Am J Cardiol. 2001;  88 230-235
  • 29 Grotemeyer K H. Effects of acetylsalicylic acid in stroke patients. Evidence of nonresponders in a subpopulation of treated patients.  Thromb Res. 1991;  63 587-593
  • 30 Buchanan M R, Brister S J. Individual variation in the effects of ASA on platelet function: implications for the use of ASA clinically.  Can J Cardiol. 1995;  11 221-227
  • 31 Wang T H, Bhatt D L, Topol E J. Aspirin and clopidogrel resistance: an emerging clinical entity.  Eur Heart J. 2006;  27 647-654
  • 32 Eikelboom J W, Hirsh J, Weitz J I et al.. Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events.  Circulation. 2002;  105 1650-1655
  • 33 Macchi L, Sorel N, Christiaens L. Aspirin resistance: definitions, mechanisms, prevalence, and clinical significance.  Curr Pharm Des. 2006;  12 251-258
  • 34 Goodman T, Ferro A, Sharma P. Pharmacogenetics of aspirin resistance: a comprehensive systematic review.  Br J Clin Pharmacol. 2008;  66 222-232
  • 35 Gonzalez-Conejero R, Rivera J, Corral J et al.. Biological assessment of aspirin efficacy on healthy individuals: heterogeneous response or aspirin failure?.  Stroke. 2005;  36 276-280
  • 36 Catella-Lawson F, Reilly M P, Kapoor S C et al.. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin.  N Engl J Med. 2001;  345 1809-1817
  • 37 Maree A O, Curtin R J, Chubb A et al.. Cyclooxygenase-1 haplotype modulates platelet response to aspirin.  J Thromb Haemost. 2005;  3 2340-2345
  • 38 Lepantalo A, Mikkelsson J, Resendiz J C et al.. Polymorphisms of COX-1 and GPVI associate with the antiplatelet effect of aspirin in coronary artery disease patients.  Thromb Haemost. 2006;  95 253-259
  • 39 Hillarp A, Palmqvist B, Lethagen S, Villoutreix B O, Mattiasson I. Mutations within the cyclooxygenase-1 gene in aspirin non-responders with recurrence of stroke.  Thromb Res. 2003;  112 275-283
  • 40 Papp E, Havasi V, Bene J et al.. Glycoprotein IIIA gene (PlA) polymorphism and aspirin resistance: is there any correlation?.  Ann Pharmacother. 2005;  39 1013-1018
  • 41 Undas A, Brummel K, Musial J, Mann K G, Szczeklik A. Pl(A2) polymorphism of beta(3) integrins is associated with enhanced thrombin generation and impaired antithrombotic action of aspirin at the site of microvascular injury.  Circulation. 2001;  104 2666-2672
  • 42 Szczeklik A, Undas A, Sanak M, Frolow M, Wegrzyn W. Relationship between bleeding time, aspirin and the PlA1/A2 polymorphism of platelet glycoprotein IIIa.  Br J Haematol. 2000;  110 965-967
  • 43 Macchi L, Christiaens L, Brabant S et al.. Resistance in vitro to low-dose aspirin is associated with platelet PlA1 (GP IIIa) polymorphism but not with C807T(GP Ia/IIa) and C-5T Kozak (GP Ibalpha) polymorphisms.  J Am Coll Cardiol. 2003;  42 1115-1119
  • 44 Cooke G E, Bray P F, Hamlington J D, Pham D M, Goldschmidt-Clermont P J. PlA2 polymorphism and efficacy of aspirin.  Lancet. 1998;  351 1253
  • 45 Cambria-Kiely J A, Gandhi P J. Aspirin resistance and genetic polymorphisms.  J Thromb Thrombolysis. 2002;  14 51-58
  • 46 von Beckerath N, Koch W, Mehilli J et al.. Glycoprotein Ia gene C807T polymorphism and risk for major adverse cardiac events within the first 30 days after coronary artery stenting.  Blood. 2000;  95 3297-3301
  • 47 Budnitz D S, Shehab N, Kegler S R, Richards C L. Medication use leading to emergency department visits for adverse drug events in older adults.  Ann Intern Med. 2007;  147 755-765
  • 48 Ray K K, Francis S, Crossman D C. A potential pharmacogenomic strategy for anticoagulant treatment in non-ST elevation acute coronary syndromes: the role of interleukin-1 receptor antagonist genotype.  J Thromb Haemost. 2005;  3 287-291
  • 49 Wysowski D K, Nourjah P, Swartz L. Bleeding complications with warfarin use: a prevalent adverse effect resulting in regulatory action.  Arch Intern Med. 2007;  167 1414-1419
  • 50 Gage B F, Eby C, Johnson J A et al.. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin.  , [Erratum in: Clin Pharmacol Ther 2008;84:430] Clin Pharmacol Ther. 2008;  84 326-331
  • 51 Flockhart D A, O'Kane D, Williams M S et al.. Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin.  Genet Med. 2008;  10 139-150
  • 52 Aithal G P, Day C P, Kesteven P J, Daly A K. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications.  Lancet. 1999;  353 717-719
  • 53 Linder M W, Looney S, Adams III J E et al.. Warfarin dose adjustments based on CYP2C9 genetic polymorphisms.  J Thromb Thrombolysis. 2002;  14 227-232
  • 54 Sanderson S, Emery J, Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis.  Genet Med. 2005;  7 97-104
  • 55 Voora D, Eby C, Linder M W et al.. Prospective dosing of warfarin based on cytochrome P-450 2C9 genotype.  Thromb Haemost. 2005;  93 700-705
  • 56 Joffe H V, Xu R, Johnson F B et al.. Warfarin dosing and cytochrome P450 2C9 polymorphisms.  Thromb Haemost. 2004;  91 1123-1128
  • 57 Furuya H, Fernandez-Salguero P, Gregory W et al.. Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy.  Pharmacogenetics. 1995;  5 389-392
  • 58 Higashi M K, Veenstra D L, Kondo L M et al.. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy.  JAMA. 2002;  287 1690-1698
  • 59 Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study.  Clin Pharmacol Ther. 2008;  83 460-470
  • 60 Rieder M J, Reiner A P, Gage B F et al.. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose.  N Engl J Med. 2005;  352 2285-2293
  • 61 Harrington D J, Gorska R, Wheeler R et al.. Pharmaocynamic resistance to warfarin is associated with nucleotide substitutions in VKORC1.  J Thromb Haemost. 2008;  6 1663
  • 62 Loebstein R, Dvoskin I, Halkin H et al.. A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance.  Blood. 2007;  109 2477-2480
  • 63 Osman A, Enstrom C, Arbring K, Soderkvist P, Lindahl T L. Main haplotypes and mutational analysis of vitamin K epoxide reductase (VKORC1) in a Swedish population: a retrospective analysis of case records.  J Thromb Haemost. 2006;  4 1723-1729
  • 64 Rost S, Fregin A, Ivaskevicius V et al.. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.  Nature. 2004;  427 537-541
  • 65 Harrington D J, Underwood S, Morse C et al.. Pharmacodynamic resistance to warfarin associated with a Val66Met substitution in vitamin K epoxide reductase complex subunit 1.  Thromb Haemost. 2005;  93 23-26
  • 66 Chen L Y, Eriksson N, Gwilliam R et al.. Gamma-glutamyl carboxylase (GGCX) microsatellite and warfarin dosing.  Blood. 2005;  106 3673-3674
  • 67 Shikata E, Ieiri I, Ishiguro S et al.. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and gamma-glutamyl carboxylase) gene variants with warfarin sensitivity.  Blood. 2004;  103 2630-2635
  • 68 Caldwell M D, Awad T, Johnson J A et al.. CYP4F2 genetic variant alters required warfarin dose.  Blood. 2008;  111 4106-4112
  • 69 Sconce E A, Daly A K, Khan T I, Wynne H A, Kamali F. APOE genotype makes a small contribution to warfarin dose requirements.  Pharmacogenet Genomics. 2006;  16 609-611
  • 70 Wadelius M, Sorlin K, Wallerman O et al.. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors.  Pharmacogenomics J. 2004;  4 40-48
  • 71 Vecsler M, Loebstein R, Almog S et al.. Combined genetic profiles of components and regulators of the vitamin K-dependent gamma-carboxylation system affect individual sensitivity to warfarin.  Thromb Haemost. 2006;  95 205-211
  • 72 Krynetskiy E, McDonnell P. Building individualized medicine: prevention of adverse reactions to warfarin therapy.  J Pharmacol Exp Ther. 2007;  322 427-434
  • 73 Lippi G, Franchini M, Montagnana M, Guidi G C. Genomics and proteomics in venous thromboembolism: building a bridge toward a rational personalized medicine framework.  Semin Thromb Hemost. 2007;  33 759-770
  • 74 Wadelius M, Chen L Y, Downes K et al.. Common VKORC1 and GGCX polymorphisms associated with warfarin dose.  Pharmacogenomics J. 2005;  5 262-270
  • 75 Coumadin Medication Guide .New York, NY; Bristol-Myers Squibb Company 2007
  • 76 McClain M R, Palomaki G E, Piper M, Haddow J E. A rapid-ACCE review of CYP2C9 and VKORC1 alleles testing to inform warfarin dosing in adults at elevated risk for thrombotic events to avoid serious bleeding.  Genet Med. 2008;  10 89-98
  • 77 Anderson J L, Horne B D, Stevens S M et al.. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation.  Circulation. 2007;  116 2563-2570
  • 78 Toriello M, Meccariello P, Mazzaccara C et al.. Comparison of the TaqMan and LightCycler systems in pharmacogenetic testing: evaluation of CYP2C9*2/*3 polymorphisms.  Clin Chem Lab Med. 2006;  44 285-287
  • 79 King C R, Porche-Sorbet R M, Gage B F et al.. Performance of commercial platforms for rapid genotyping of polymorphisms affecting warfarin dose.  Am J Clin Pathol. 2008;  129 876-883
  • 80 McWilliam A, Lutter R, Nardinelli C. Health Care Savings from Personalizing Medicine Using Genetic Testing: The Case of Warfarin. Washington, DC; AEI-Brookings Joint Center for Regulatory Studies Working Paper 06–23 2006
  • 81 You J H, Chan F W, Wong R S, Cheng G. The potential clinical and economic outcomes of pharmacogenetics-oriented management of warfarin therapy - a decision analysis.  Thromb Haemost. 2004;  92 590-597
  • 82 President's Council of Advisors on Science and Technology. Priorities for Personalized Medicine .Available at: http://www.ostp.gov/galleries/PCAST/pcast_report_v2.pdf Accessed September 2008
  • 83 Reynolds K K, Valdes Jr R, Hartung B R, Linder M W. Individualizing warfarin therapy.  Personalized Medicine. 2007;  4 11-31
  • 84 Michelson A D, Furman M I, Goldschmidt-Clermont P et al.. Platelet GP IIIa Pl(A) polymorphisms display different sensitivities to agonists.  Circulation. 2000;  101 1013-1018
  • 85 Chen Y, Kuehl G E, Bigler J et al.. UGT1A6 polymorphism and salicylic acid glucuronidation following aspirin.  Pharmacogenet Genomics. 2007;  17 571-579
  • 86 Angiolillo D J, Fernandez-Ortiz A, Bernardo E et al.. Contribution of gene sequence variations of the hepatic cytochrome P450 3A4 enzyme to variability in individual responsiveness to clopidogrel.  Arterioscler Thromb Vasc Biol. 2006;  26 1895-1900

Linnea M BaudhuinPh.D. 

Assistant Professor of Laboratory Medicine and Pathology, Department of Laboratory Medicine and Pathology

Mayo Clinic, 200 First St. SW, Rochester, MN 55905

Email: baudhuin.linnea@mayo.edu