Semin Plast Surg 2009; 23(2): 148-154
DOI: 10.1055/s-0029-1214167
© Thieme Medical Publishers

Animal Models for the Study of Osteomyelitis

Mitul Patel1 , Yuri Rojavin1 , Amir A. Jamali2 , Samantha J. Wasielewski1 , Christopher J. Salgado3
  • 1Department of Surgery, Cooper University Hospital, Robert Wood Johnson Medical School, Camden, New Jersey
  • 2Department of Orthopedic Surgery, UC Davis Medical Center, Sacramento, California
  • 3Department of Plastic Surgery, University Hospitals Cleveland, Case Western Reserve University, Cleveland, Ohio
Further Information

Publication History

Publication Date:
30 April 2009 (online)

ABSTRACT

Osteomyelitis is an acute or chronic inflammatory process of the bone and its related structures secondary to an infection with pyogenic organisms. Because of the variety in disease presentations and pathophysiology of osteomyelitis, it is very difficult to evaluate in clinical studies. Therefore, animal models have been created for in vivo experimentation. A PubMed and OVID search was performed on March 31, 2008, using keywords osteomyelitis, animal model (rabbit, rat, mouse, avian, dog, sheep, and goat), and experimental osteomyelitis. The objective of this review was to provide a literature review of the animal models created to study osteomyelitis. The models were chosen based on historical relevance and clinical applicability. Numerous animal models exist to study both acute and chronic osteomyelitis. Many models have been created that allow investigators to study various aspects in the treatment and diagnosis of osteomyelitis. Based on the needs of investigators, an animal model must be carefully selected for ideal research, as no single model encompasses all aspects of osteomyelitis.

REFERENCES

  • 1 Maynor M L, Moon R E, Camporesi E M. Chronic osteomyelitis of the tibia: treatment of hyperbaric oxygen and autogenous microsurgical muscle transplantation.  J South Orthop Assoc. 1998;  7 43-57
  • 2 Waldvogel F A, Medoff G, Swartz M N. Osteomyelitis: a review of clinical features, therapeutic considerations, and unusual aspects (part 1–3).  N Engl J Med. 1970;  282 198-206
  • 3 Cierny III G, Mader J T, Penninck J J. A clinical staging system for adult osteomyelitis.  Clin Orthop Relat Res. 2003;  414 7-24
  • 4 Salgado C J, Jamali A A, Mardini S. A model for chronic osteomyelitis using Staphylococcus aureus in goats.  Clin Orthop Relat Res. 2005;  436 246-250
  • 5 Rissing J P. Animal models of osteomyelitis: knowledge, hypothesis, and speculation.  Infect Dis Clin North Am. 1990;  4 377-390
  • 6 Scheman L, Janota M, Lewin P. The production of experimental osteomyelitis: preliminary report.  JAMA. 1941;  177 1525-1529
  • 7 Leader P, Padgett P. Animal models in biomedical research. In: Fox JC, Cohen BJ, Loew FM Laboratory Animal Medicine. San Diego, CA; Academic Press Inc 1984: 134-139
  • 8 Rodet A. Etude experimentale sur l'osteomyelite infectieuse.  Compt Rend Acad Sci. 1884;  99 569-571
  • 9 Norden C W, Kennedy E. Experimental osteomyelitis. I: a description of the model.  J Infect Dis. 1970;  122 410-418
  • 10 Andriole V T, Nagel D A, Southwick W O. A paradigm for human chronic osteomyelitis.  J Bone Joint Surg Am. 1973;  55 1511-1515
  • 11 Johansson A, Svensson O, Blomgren G. Anaerobic osteomyelitis: a new experimental rabbit model.  Clin Orthop Relat Res. 1991;  265 297-301
  • 12 Schulz S, Steinhart H, Mutters R. Chronic osteomyelitis in a new rabbit model.  J Invest Surg. 2001;  14 121-131
  • 13 Zak O, Zak F, Rich R. Experimental staphylococcal osteomyelitits in rats: therapy with rifampin and cloxacillin alone or in combination. In: Perti P, Grassi G Current Chemotherapy and Immunotherapy. Washington, DC; American Society for Microbiology 1982: 973
  • 14 Rissing J P, Buxton T B, Weinstein B S. Model of experimental chronic osteomyelitis in rats.  Infect Immun. 1985;  47 581-586
  • 15 Spagnolo N, Greco F, Rossi A. Chronic staphylococcal osteomyelitis: a new experimental rat model.  Infect Immun. 1993;  61 5225-5230
  • 16 Gracia E, Laclériga A, Monzón M. Application of a rat osteomyelitis model to compare in vivo and in vitro the antibiotic efficacy against bacteria with high capacity to form biofilms.  J Surg Res. 1998;  79 146-153
  • 17 Monzón M, Garcia-Alvarez F, Laclériga A. A simple infection model using pre-colonized implants to reproduce chronic Staphylococcus aureus osteomyelitis and study antibiotic treatment.  J Orthop Res. 2001;  19 820-826
  • 18 Lucke M, Schmidmaier G, Sadoni S. A new model of implant-related osteomyelitis in rats.  J Biomed Mater Res B Appl Biomater. 2003;  67 593-602
  • 19 Chadha H S, Fitzgerald R H, Wiater P et al.. Experimental acute hematogenous osteomyelitis in mice. I. Histopathological and immunological findings.  J Orthop Res. 1999;  17 376-381
  • 20 Emslie K R, Nade S. Acute hematogenous staphylococcal osteomyelitits. A description of the natural history in an avian model.  Am J Pathol. 1983;  110 333-345
  • 21 Deysine M, Rosario E, Isenberg H D. Acute hematogenous osteomyelitis: an experimental model.  Surgery. 1976;  79 97-99
  • 22 Fitzgerald R H. Experimental osteomyelitis: description of a canine model and the role of depot administration of antibiotics in the prevention and treatment of sepsis.  J Bone Joint Surg Am. 1983;  65 371-380
  • 23 Petty W, Spanier S, Shuster J J. The influence of skeletal implants on incidence of infection. Experiments in a canine model.  J Bone Joint Surg Am. 1985;  67 1236-1244
  • 24 Garvin K L, Miyano J A, Robinson D. Polylactide/polyglycolide antibiotic implants in the treatment of osteomyelitis. A canine model.  J Bone Joint Surg Am. 1994;  76 1500-1506
  • 25 Kaarsemaker S, Walenkamp G HIM, Bogaard A EJ. New model for chronic osteomyelitis with Staphylococcus aureus in sheep.  Clin Orthop Relat Res. 1997;  339 246-252
  • 26 Rinsky L, Goris M L, Schurman D J, Nagel D A. Technetium-99 bone scanning in experimental osteomyelitis.  Clin Orthop Relat Res. 1977;  128 361-366
  • 27 Gratz S, Doerner J, Oestmann J W. 67Ga-citrate and 99Tcm-MDP for estimating the severity of vertebral osteomyelitis.  Nucl Med Commun. 2000;  21 111-120
  • 28 Gratz S, Rennen H J, Boerman O C et al.. Technetium-99-interleukin-8 for imaging acute osteomyelitits.  J Nucl Med. 2001;  42 1257-1264
  • 29 Dams E THM, Nijhof M W, Boerman O C. Scintigraphic evaluation of experimental chronic osteomyelitis.  J Nucl Med. 2000;  41 896-902
  • 30 Ledermann H P, Kaim A, Bongartz G. Pitfalls and limitations of magnetic resonance imaging in chronic posttraumatic OM.  Eur Radiol. 2000;  10 1815-1823
  • 31 Koort J K, Makinen T J, Knuuti J. Comparative 18F-FDG PET of experimental Staphylococcus aureus osteomyelitis and normal bone healing.  J Nucl Med. 2004;  45 1406-1411
  • 32 Jones-Jackson L, Walker R, Purnell G. Early detection of bone infection and differentiation from post-surgical inflammation using 2-deoxy-2-[18F]-fluoro-d-glucose positron emission tomography (FDG-PET) in an animal model.  J Orthop Res. 2005;  23 1484-1489
  • 33 Makinen T J, Lankinen P, Poyhonen T. Comparison of 18F-FDG and 68Ga PET imaging in the assessment of experimental osteomyelitis due to Staphylococcus aureus.  Eur J Nucl Med Mol Imaging. 2005;  32 1259-1268

Christopher J SalgadoM.D. 

Department of Plastic Surgery, University Hospitals Cleveland, Case Western Reserve University

11100 Euclid Avenue, Cleveland, OH 44106

Email: salgado_plastics@hotmail.com

    >