RSS-Feed abonnieren
DOI: 10.1055/s-0029-1216723
Asymmetric Total Synthesis of (+)-Brefeldin A: Intramolecular Epoxide-Opening/RCM Strategy
Publikationsverlauf
Publikationsdatum:
17. April 2009 (online)
Abstract
A highly efficient asymmetric total synthesis of (+)-brefeldin A was accomplished by using intramolecular epoxide opening of an epoxy allylsilane and RCM reaction for the constructions of the cyclopentane and macrocyclic lactone rings of (+)-brefeldin A, respectively.
Key words
(+)-brefeldin A - cyclizations - epoxides - metathesis - total synthesis
- Supporting Information for this article is available online:
- Supporting Information
- 1
Singleton VL.Bohonos N.Ullstrup AJ. Nature (London) 1958, 181: 1072 - 2
Weber HP.Hauser D.Sigg HP. Helv. Chim. Acta 1971, 54: 2763 - For the representative recent syntheses of BFA and related references, see the following references:
-
3a
Wu Y.Gao J. Org. Lett. 2008, 10: 1533 -
3b
Lin W.Zercher CK. J. Org. Chem. 2007, 72: 4390 -
3c
Seo S.-Y.Jung J.-K.Paek S.-M.Lee Y.-S.Kim S.-H.Suh Y.-G. Tetrahedron Lett. 2006, 47: 6527 -
3d
Wu Y.-K.Shen X.Yang Y.-Q.Hu Q.Huang J.-H. J. Org. Chem. 2004, 69: 3857 -
3e
Wu Y.-K.Shen X.Yang Y.-Q.Hu Q.Huang J.-H. Tetrahedron Lett. 2004, 45: 199 -
3f
Kim D.Lee J.Shim PJ.Lim JI.Jo H.Kim S. J. Org. Chem. 2002, 67: 764 -
3g
Kim D.Lee J.Shim PJ.Lim JI.Doi T.Kim S. J. Org. Chem. 2002, 67: 772 -
3h
Suh YG.Jung J.-K.Seo S.-Y.Min K.-H.Shin D.-Y.Lee Y.-S.Kim S.-H.Park H.-J. J. Org. Chem. 2002, 67: 4127 -
3i
Trost BM.Crawley ML. J. Am. Chem. Soc. 2002, 124: 9328 -
3j
Wang Y.Romo D. Org. Lett. 2002, 4: 3231 - See also the following pioneering works on brefeldin A synthesis:
-
3k
Corey EJ.Wollenberg RH. Tetrahedron Lett. 1976, 4705 -
3l
Bartlett PA.Green FR. J. Am. Chem. Soc. 1978, 100: 4858 -
3m
Baudouy R.Crabbé P.Greene AE.Le Drian C.Orr AF. Tetrahedron Lett. 1977, 2973 -
3n
Kitahara T.Mori K.Matsui M. Tetrahedron Lett. 1979, 3021 - For recent reviews on olefin metathesis, see:
-
4a
Diver ST.Giessert AJ. Chem. Rev. 2004, 104: 1317 -
4b
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4490 - 5
Gradillas A.Perez-Castells J. Angew. Chem. Int. Ed. 2006, 45: 6086 -
6a
Kim Y.-J.Tae J. Synlett 2006, 61 -
6b
Lee J.Jung Y.-H.Tae J. Bull. Korean Chem. Soc. 2007, 28: 513 -
6c
Jung Y.-H.Lee J.Tae J. Chem. Asian J. 2007, 2: 656 - 7 For an asymmetric desymmetrization
method, see:
Li Z.Zhanh W.Yamamoto H. Angew. Chem. Int. Ed. 2008, 47: 7520 -
8a
Tokunaga M.Larrow JF.Kakiuchi F.Jacobsen EN. Science 1997, 277: 936 -
8b
Brandes BD.Jacobsen EN. Tetrahedron: Asymmetry 1997, 8: 3927 - 9
Connon SJ.Blechert S. Angew. Chem. Int. Ed. 2003, 42: 1900 -
10a
Thibaudeau S.Gouverneur V. Org. Lett. 2003, 5: 4891 -
10b
Engelhardt FC.Schmitt MJ.Taylor RE. Org. Lett. 2001, 3: 2209 -
10c
Taylor RE.Engelhardt CE.Schmitt MJ.Yuan H. J. Am. Chem. Soc. 2001, 123: 2964 -
11a
Molander GA.Andrews SW. J. Org. Chem. 1989, 54: 3114 -
11b
Procter G.Russell AT.Murphy PJ.Tan TS.Mather AN. Tetrahedron 1988, 44: 3953 - For the synthesis of BFA by intramolecular cyclization reactions using allylsilanes, see:
-
12a Epoxide opening:
Hatakeyama S.Sugawara K.Kawamura M.Takano S. Synlett 1990, 691 -
12b
β-Lactone opening: ref 3j
-
13a
Jastrzebska I.Scaglione JB.DeKoster GT.Rath NP.Covey DF. J. Org. Chem. 2007, 72: 4837 -
13b
Fürstner A.Thiel OR.Ackermann L. Org. Lett. 2001, 3: 449 -
13c
Takahata H.Yotsui Y.Momose T. Tetrahedron 1998, 54: 13505 -
14a
Rao KS.Mukkanti K.Reddy DS.Pla M.Iqbal J. Tetrahedron Lett. 2005, 46: 2287 -
14b
Meta CT.Koide K. Org. Lett. 2004, 6: 1785 -
14c
Zhu G.Lu X. Tetrahedron: Asymmetry 1995, 6: 1657 - 15
Rao KS.Mukkanti K.Reddy DS.Pal M.Iqbal J. Tetrahedron Lett. 2005, 46: 2287 - 16
Meta CT.Koide K. Org. Lett. 2004, 6: 1785
References and Notes
We were not able to isolate the minor Z-isomers. Only
E-isomers were isolated after column
chromatography.
Lewis Acid Mediated
Intramolecular Epoxide Opening: To a solution of 5 (365 mg, 1.14 mmol) in toluene (230 mL) was
added BF3˙OEt2 (0.21 mL, 2.3 mmol)
at -78 ˚C for 2 h using a syringe pump. The reaction
mixture was treated with sat. aq NaHCO3 (20 mL) at -78 ˚C
and the layers were separated. The aqueous layer was extracted with
EtOAc (2 × 20 mL) and the combined organic layers were
dried over MgSO4, filtered, concentrated in vacuo, and
the residue was purified by silica gel chromatography (hexane-EtOAc,
6:1) to give 8 and the cis isomer
(trans/cis = 88:
12, 203 mg, 72%) as a colorless oil. The ratios were determined
by HPLC.
8: R
f
0.29 (hexane-EtOAc,
3:1); [α]²4
D -51
(c 0.125, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 6.76-6.86
(m, 4 H), 5.78-5.89 (m, 1 H), 4.94-5.09 (m, 2
H), 4.65-4.72 (m, 1 H), 3.76 (s, 3 H), 3.68-3.75
(m, 1 H), 3.55-3.63 (m, 1 H), 2.26-2.42 (m, 2
H), 2.12-2.22 (m, 1 H), 2.03-2.12 (m, 1 H), 1.69-1.79 (m,
2 H), 1.36 (t, J = 5.5 Hz, 1
H). ¹³C NMR (100 MHz, CDCl3): δ = 154.06,
152.42, 142.55, 116.70, 114.81, 65.19, 55.88, 46.18, 40.30, 36.33.
IR (film, neat): 3447, 3066, 2923, 2353, 1735, 1631, 1584, 1497,
1463, 1436, 1355, 1221, 1177, 1104, 1035, 992, 905, 823, 737 cm-¹.
HRMS: m/z [M]+ calcd
for C15H20O3: 248.1412; found:
248.1417.
cis-Isomer of 8: R
f
0.29 (hexane-EtOAc,
3:1). ¹H NMR (400 MHz, CDCl3): δ = 6.76-6.86
(m, 4 H), 5.85-5.97 (m, 1 H), 5.04-5.16 (m, 2
H), 4.74-4.81 (m, 1 H), 3.77 (s, 3H), 3.65 (dd, J = 11.2, 7.0 Hz, 1 H), 3.55
(dd, J = 11.2, 6.0 Hz, 1 H), 3.03
(q, J = 4.2 Hz, 1 H), 2.47-2.58
(m, 1 H), 2.00-2.13 (m, 2 H), 1.88-1.97 (m, 1
H), 1.78-1.88 (m, 1 H). 1.40 (t, J = 5.5 Hz,
1 H). ¹³C NMR (100 MHz, CDCl3): δ = 139.13,
116.77, 115.62, 114.82, 78.52, 64.06, 55.08, 43.73, 43.70, 38.39, 35.39.
Macrolactone Synthesis by Ring-Closing Metathesis:
A solution of 2 and 4-epi-2 (32 mg, 0.060 mmol) and 7 (10 mol%)
in CH2Cl2 (60 mL) was refluxed at 55 ˚C
for 8 h under N2. The solvent was removed in vacuo and
the residue was purified by silica gel chromatography (hexane-EtOAc, 30:1)
to give the macrocyclic lactones (25 mg, 81%) as a colorless
oil. These lactones (22.6 mg, 0.045 mmol) in THF (0.5 mL) were treated
with 1 M TBAF in THF (2.19 mL, 2.19 mmol) at r.t. for 3 h. The solvent
was removed in vacuo and the residue was purified by silica gel
chromatography (hexane-EtOAc, 5:1) to give 14 (7
mg) and 4-epi-14 (7
mg) in 78% yield.
14:
mp 178-179 ˚C; R
f
0.26 (hexane-EtOAc,
2:1); [α]²0
D +42.6
(c 0.9, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 7.38 (dd, J = 15.7, 3.2 Hz, 1 H), 6.81
(m, 4 H), 5.91 (dd, J = 15.6, 1.8
Hz, 1 H), 5.70 (ddt, J = 16.4,
11.4, 5.8 Hz, 1 H), 5.29 (dd, J = 15.2,
9.2 Hz, 1 H), 4.81-4.91 (m, 1 H), 4.63-4.71 (m,
1 H), 4.10-4.18 (m, 1 H), 3.76 (s, 3 H), 2.25-2.48
(m, 3 H), 2.00 (q, J = 9.3 Hz,
2 H), 1.80-1.91 (m, 2 H), 1.70-1.80 (m, 3 H),
1.63-1.70 (m, 1 H), 1.47-1.55 (m, 1 H), 1.26 (d, J = 6.2 Hz, 3 H), 0.90-1.00
(m, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 166.31,
154.02, 151.69, 136.72, 130.67, 117.76, 116.94, 114.81, 78.49, 76.39,
71.89, 55.90, 52.60, 44.50, 40.31, 39.00, 34.33, 31.93, 26.85, 21.01.
IR (film, neat): 3496, 2925, 2851, 1709, 1681, 1506, 1443, 1377,
1268, 1227, 1032, 969, 824 cm-¹. HRMS: m/z [M]+ calcd
for C23H30O5: 386.2093; found:
386.2090.
4-epi-14:
mp 105-106 ˚C; R
f
0.31 (hexane-EtOAc,
2:1); [α]²0
D +40.3
(c 0.65, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 7.10 (dd, J = 15.6, 8.4 Hz, 1 H), 6.81
(s, 4 H), 5.78 (d,
J = 16.0
Hz, 1 H), 5.66 (ddt, J = 14.9,
10.2, 4.6 Hz, 1 H), 5.28 (dd, J = 14.9,
9.6 Hz, 1 H), 4.89-4.99 (m, 1 H), 4.63-4.70 (m,
1 H), 4.42-4.48 (m, 1 H), 3.76 (s, 3 H), 2.86 (q, J = 4.8 Hz, 1 H), 2.18-2.28
(m, 1 H), 2.11-2.18 (m, 1 H), 2.02-2.11 (m, 1
H), 1.92-2.02 (m, 2 H), 1.75-1.87 (m, 2 H), 1.61-1.75 (m,
3 H), 1.48-1.53 (m, 1 H), 1.26 (d, J = 6.4
Hz, 3 H), 0.89-1.00 (m, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 166.43, 153.91,
151.97, 151.09, 137.78, 130.17, 119.89, 116.89, 114.80, 79.08, 72.04,
71.91, 55.87, 50.24, 40.33, 39.72, 35.63, 34.58, 32.01, 26.51, 20.93.
IR (film, neat): 3475, 2929, 2846, 2364, 1714, 1506, 1457, 1355,
1260, 1228, 1038, 974, 825 cm-¹. HRMS: m/z [M]+ calcd
for C23H30O5: 386.2093; found:
386.2090.
Synthesis of (+)-Brefeldin
A (1): To a solution of 14 (8 mg, 0.02
mmol) in MeCN-H2O (4:1, 0.2 mL) was added CAN (ceric
ammonium nitrate; 22 mg, 0.040 mmol) in MeCN-H2O
(4:1, 0.1 mL) at 0 ˚C. The reaction mixture was warmed to
r.t. and stirred for 1 h. A solution of sat. aq NH4Cl
(2.5 mL) was added. The layers were separated and the aqueous layer
was extracted with EtOAc (2 × 10 mL). The combined organic
layers were dried over MgSO4, filtered, concentrated in
vacuo, and the residue was purified by silica gel chroma-tography
(CH2Cl2-MeOH, 20:1) to give 1 (4.8 mg, 84%) as a white solid;
mp 202-204 ˚C; R
f
0.23 (CH2Cl2-MeOH, 10:1); [α]²²
D +86.6
(c 0.9, MeOH). ¹H
NMR (400 MHz, CD3OD): δ = 7.49 (dd, J = 15.6, 3.0 Hz, 1 H), 5.85
(dd, J = 15.6, 1.9 Hz, 1 H),
5.79 (ddd, J = 15.2, 10.2, 4.7
Hz, 1 H), 5.20 (dd, J = 15.0,
9.6 Hz, 1 H), 4.75-4.83 (m, 1 H), 4.18-4.25 (m,
1 H), 4.01-4.07 (m, 1 H), 2.39 (q, J = 8.7
Hz, 1 H), 2.12 (ddd, J = 13.6,
8.6, 5.4 Hz, 1 H), 1.96-2.06 (m, 3 H), 1.72-1.92
(m, 6 H), 1.52-1.63 (m, 2 H), 1.40-1.48 (m, 1
H), 1.27 (d, J = 6.3 Hz, 3 H),
0.85-1.00 (m, 1 H). ¹³C NMR
(100 MHz, CD3OD): δ = 168.38, 155.12,
138.13, 131.41, 117.78, 76.63, 73.21, 72.98, 53.18, 45.46, 44.09,
41.85, 34.99, 32.97, 28.01, 21.06. IR (film, neat): 3364, 2972,
2927, 2857, 1715, 1442, 1255, 1111, 1077, 1000, 975 cm-¹.
HRMS: m/z [M]+ calcd
for C16H24O4: 280.1675; found:
280.1681.