Subscribe to RSS
DOI: 10.1055/s-0029-1216736
Synthesis of Novel Chiral Phase-Transfer Catalysts and Their Application to Asymmetric Synthesis of α-Amino Acid Derivatives
Publication History
Publication Date:
22 April 2009 (online)
Abstract
To investigate the electronic and steric influences on enantioselectivities of asymmetric phase-transfer reactions, a series of chiral quaternary ammonium salts were synthesized from cinchona alkaloids and 2-chloromethylbenzimidazole or 1-chloromethyl benzotriazole. Using one of the cinchonine-derived alkaloid catalysts, enantioselective alkylations of N-(diphenylmethylene) glycine tert-butyl ester were efficiently carried out with various alkyl halides to give products in high enantiomeric excess (94-99% ee).
Key words
asymmetric catalysis - alkylation - amino acids - phase-transfer catalysis - cinchona alkaloids
- Supporting Information for this article is available online:
- Supporting Information
-
1a
O’Donnell MJ. Acc. Chem. Res. 2004, 37: 506 -
1b
Lygo B.Andrews BI. Acc. Chem. Res. 2004, 37: 518 -
1c
Vachon J.Lacour J. Chimia 2006, 60: 266 -
1d
Hashimoto T.Maruoka K. Chem. Rev. 2007, 107: 5656 -
1e
Maruoka K. Org. Process Res. Dev. 2008, 12: 679 -
2a
Thierry B.Plaquevent JC.Cahard D. Tetrahedron: Asymmetry 2001, 12: 983 -
2b
Lygo B.Crosby J.Lowdon TR.Wainwright PG. Tetrahedron 2001, 57: 2391 -
2c
Park H.Jeong B.Yoo M.Park M.Huh H.Jew S. Tetrahedron Lett. 2001, 42: 4645 -
2d
Lygo B.Andrews BI.Crosby J.Peterson JA. Tetrahedron Lett. 2002, 43: 8015 -
3a
Ooi T.Kameda M.Maruok K. J. Am. Chem. Soc. 2003, 125: 5139 -
3b
Kitamura M.Shirakawa S.Maruoka K. Angew. Chem. Int. Ed. 2005, 44: 1549 -
3c
Hashimoto T.Tanaka Y.Maruoka K. Tetrahedron: Asymmetry 2003, 14: 1599 -
3d
Han Z.Yamaguchi Y.Kitamura M.Maruoka K. Tetrahedron Lett. 2005, 46: 8555 - 4
O’Donnell MJ.Bennett WD.Wu S. J. Am.Chem. Soc. 1989, 111: 2353 - 5
O’Donnell MJ.Wu S.Huffman JC. Tetrahedron 1994, 50: 4507 - 6
Lygo B.Wainwright PG. Tetrahedron Lett. 1997, 38: 8595 - 7
Corey EJ.Xu F.Noe MC. J. Am. Chem. Soc. 1997, 119: 12414
References and Notes
Procedure for the
Synthesis of 1a-4a
To a suspension of cinchona alkaloid (10 mmoL) in toluene (40
mL) was added 2-chloromethylbenzimidazole (10.5 mmoL), and the mixture
was stirred at reflux for 3 h (TLC with CH2Cl2-MeOH = 15:1).
The mixture was cooled to r.t. and filtered. The solids were collected
and recrystallized in Et2O to afford the pure product.
Compound 1a: white solid (prepared from cinchonine); yield
93%; mp 182-183 ˚C; [α]D
²5 +68
(c 0.5, EtOH). IR (KBr): 3425, 2947,
1637, 1510, 1458, 1402, 746 cm-¹.
¹H
NMR (400 MHz, CDCl3): δ = 8.87 (d, J = 4.6 Hz,
1 H), 7.83-7.80 (m, 2 H), 7.51-7.45 (m, 3 H),
7.27-7.16 (m, 4 H), 6.70-6.67 (m, 2 H), 6.60 (s,
1 H), 6.30 (d, J = 13.8
Hz, 1 H), 5.93 (m, 1 H), 5.30-5.23 (m, 3 H), 4.85 (m, 1
H), 4.71 (t, J = 5.2
Hz, 1 H), 4.07 (t, J = 11.2
Hz, 1 H), 3.97 (t, J = 8.5 Hz,
1 H), 3.07 (m, 1 H), 2.62 (m, 1 H), 2.35-1.78 (m, 4 H), 0.87
(m, 1 H). MS: m/z (%) 425 ([M-Cl]+,
5), 424 (10), 293 (40), 159 (20), 132 (100). Anal. Calcd for C27H29ClN4O:
C, 70.34; H, 6.34; N, 12.15. Found: C, 70.32; H, 6.30; N, 12.18.
Compound 2a: white solid (prepared from cinchonidine); yield
90%; mp 175-176 ˚C. [α]D
²5 -34
(c 0.5, EtOH). IR (KBr): 3423, 3238,
2960, 1641, 1620, 1591, 1508, 1456, 746 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 8.86 (d, J = 4.4 Hz, 1
H), 7.89 (d, J = 8.3
Hz, 1 H), 7.79 (d, J = 4.6
Hz, 1 H), 7.64-7.01 (m, 7 H), 6.77 (s, 1 H), 6.57-6.46
(m, 1 H), 6.14 (d, J = 13.8
Hz, 1 H), 5.46-5.24 (m, 2 H), 5.02 (m, 2 H), 4.72 (d, J = 13.6 Hz,
1 H), 4.05 (s, 1 H), 3.63-3.50 (m, 2 H), 2.68 (d, J = 5.0 Hz,
1 H), 2.20 (s, 1 H), 2.07-1.85 (m, 4 H), 1.24 (m, 1 H),
1.11 (m, 1 H). MS: m/z (%) = 425
(5) [M - Cl]+, 424
(10), 293 (55), 159 (15), 136 (40), 132 (100). Anal. Calcd for C27H29ClN4O:
C, 70.34; H, 6.34; N, 12.15. Found: C, 70.37; H, 6.31; N, 12.14.
Compound 3a: pink solid (prepared from quinidine);
yield 90%; mp 210-212 ˚C (dec.); [α]D
²5 +112
(c 0.2, EtOH). IR (KBr): 3425, 2935,
1624, 1512, 1437, 1242, 1028, 743 cm-¹. ¹H
NMR (400 MHz, CD3OD): δ = 8.78 (d, J = 4.6 Hz,
1 H), 8.03 (d, J = 9.4
Hz, 1 H), 7.92 (d, J = 4.8
Hz, 1 H), 7.74-7.13 (m, 6 H), 6.76 (d, J = 1.7
Hz, 1 H), 6.12-6.03 (m, 1 H), 5.35-5.27 (m, 3
H), 5.08 (d, J = 10.0
Hz, 1 H), 4.76 (t, J = 10.0
Hz, 1 H), 4.15 (t, J = 9.0
Hz, 1 H), 3.97 (s, 3 H), 3.90 (m, 2 H), 3.42 (m, 1 H), 2.79 (m,
1 H), 2.41 (t, J = 2.0
Hz, 1 H), 2.31 (s, 1 H), 1.89-1.98 (m, 4 H), 1.03 (m, 1
H). MS: m/z (%) = 455
(5) [M - Cl]+, 454
(10), 324 (35), 189 (20), 136 (100). Anal. Calcd for C28H31ClN4O2:
C, 68.49; H, 6.36; N, 11.41. Found: C, 68.52; H, 6.33; N, 11.37.
Compound 4a: pink solid (preapred from quinine);
yield 85%, mp 170-172 ˚C (dec.); [α]D
²5 -50
(c 0.2, CH2Cl2).
IR (KBr): 3403, 1622, 1510, 1242, 1028, 748 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 8.74 (d, J = 4.4 Hz,
1 H), 7.97 (d, J = 9.1
Hz, 1 H), 7.79 (d, J = 4.4
Hz, 1 H), 7.66-7.17 (m, 6 H), 6.90 (s, 1 H), 6.59 (s, 1
H), 5.80 (d, J = 13.0
Hz, 1 H), 5. 51-5. 40 (m, 2 H), 5.17 (d, J = 7.1
Hz, 1 H), 5.00 (m, 2 H), 4.06 (d, J = 6.3
Hz, 2 H), 3.94 (t, J = 8.5
Hz, 1 H), 3.61 (s, 3 H), 3.29 (m, 1 H), 2.68 (d, J = 4.4
Hz, 1 H), 2.34 (s, 1 H), 2.26-1.83 (m, 4 H), 1.20 (m, 1
H). MS: m/z (%) = 455
(10) [M - Cl]+, 454
(15), 123 (80), 136 (40), 132 (100). Anal. Calcd for C28H31ClN4O2:
C, 68.49; H, 6.36; N, 11.41. Found: C, 68.54; H, 6.40; N, 11.39.
Procedure for the
synthesis of 1b-4b
To a suspension of the cinchona alkaloid (10 mmoL) in 40 mL
toluene was added 1-chloromethylbenzotriazole(10.5 mmoL), and the
mixture was stirred at reflux for 3 h (TLC with CH2Cl2-MeOH = 15:1).
The solvent was evaporated under reduced pressure. The pure product
was attained by chromatography using CH2Cl2-MeOH
as eluent.
Compound 1b: white
solid (prepared from cinchonine); yield 85%; mp 170-172 ˚C; [α]D
²5 +148
(c 0.5, EtOH). IR (KBr): 3424, 2949,
1631, 1505, 1510, 1456, 1418, 1289, 764 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 8.81-8.79
(m, 1 H), 8.73 (d, J = 7.9
Hz, 1 H), 8.65 (d, J = 8.1
Hz, 1 H), 8.04-8.01 (m, 1 H), 7.97-7.87 (m, 3
H), 7.73-7.61 (m, 1 H), 7.45-7.38 (m, 2 H), 6.86
(s, 1 H), 5.76-5.73 (m, 1 H), 5.22-5.14 (m, 2 H),
4.98-4.83 (m, 1 H), 4.86-4.75 (m, 1 H), 4.08-3.87
(m, 1 H), 3.81-3.75 (m, 1 H), 3.70-3.54 (m, 2
H), 2.95-2.89 (m, 1 H), 2.63-2.54 (m, 1 H), 2.31-1.89
(m, 5 H), 1.29-1.26 (m, 1 H). Anal. Calcd for C26H28ClN5O:
C, 67.59; H, 6.11; N, 15.16. Found: C, 67.54; H, 6.16; N, 15.20.
ESI-MS: 426
[M - Cl]+.
Compound 2b: white solid (prepared from cinchonidine); yield
89%; mp 230-240 ˚C (dec.); [α]D
²5 -154
(c 0.5, EtOH). IR (KBr): 3398, 3243,
2955, 1629, 1498, 1455, 760 cm-¹. ¹H NMR
(300 MHz, CDCl3): δ = 8.82-8.81
(m, 1 H), 8.69 (d, J = 7.8
Hz, 1 H), 8.45-8.41 (m, 1 H), 7.95-7.77 (m, 4
H), 7.49-7.37 (m, 3 H), 7.20 (s, 1 H), 6.79 (s, 1 H), 5.42-5.31 (m,
1 H), 5.13-5.08 (m, 1 H), 4.98 (d, J = 10.2
Hz, 1 H), 4.26-4.23 (m, 1 H), 3.69-3.56 (m, 2
H), 3.22-3.19 (m, 1 H), 2.52 (s, 1 H), 1.72-1.57
(m, 1 H), 1.09-1.01 (m, 1 H), 2.11-1.93 (m, 5
H). Anal. Calcd for C26H28ClN5O:
C, 67.59; H, 6.11; N, 15.16. Found: C, 66.94; H, 6.20; N, 15.19.
ESI-MS: 426 [M - Cl]+.
Compound 3b: white solid (prepared from quinidine);
yield 88%; mp 190-195 ˚C (dec.); [α]D
²5 +149
(c 0.5, EtOH). IR (KBr): 3428, 2946,
1623, 1508, 1460, 1239 cm-¹. ¹H
NMR (300 MHz, CD3Cl): δ = 8.63 (d, J = 8.1 Hz,
1 H), 8.46 (d, J = 4.2
Hz, 1 H), 7.83-7.78 (m, 4 H), 7.40-7.37 (m, 2
H), 7.21-7.11 (m, 1 H), 6.87 (s, 1 H), 5.80-5.68
(m, 1 H), 5.15-5.10 (m, 2 H), 4.87-4.80 (m, 1
H), 4.25-4.22 (m, 2 H), 3.85 (s, 3 H), 3.66-3.57
(m, 1 H), 3.06-3.03 (m, 1 H), 2.55-2.35 (m, 3
H), 2.33-2.31 (m, 1 H), 2.17 (t, J = 12.0
Hz, 1 H), 1.87-1.71 (m, 3 H), 1.25-1.21 (m, 1
H). ESI-MS: 456.6
[M - Cl]+.
Anal. Calcd for C27H30ClN5O2:
C, 65.91; H, 6.15; N, 14.23. Found: C, 65.89; H, 6.19; N, 14.21.
Compound 4b: white solid (prepared from quinine);
yield 90%; mp 160-162 ˚C; [α]D
²5 -122
(c 0.5, EtOH). IR (KBr): 3421, 1621,
1506, 1460, 1352, 1235 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 8.68 (s,
1 H), 8.65 (d, J = 4.5
Hz, 1 H), 7.95-7.93 (m, 1 H), 7.91 (d, J = 3.3
Hz, 1 H), 7.78 (d, J = 4.2 Hz,
1 H), 7.66-7.64 (m, 1 H), 7.56 (d, J = 13.5Hz,
1 H), 7.47 (t, J = 7.2
Hz, 1 H), 7.36 (d, J = 7.5
Hz, 1 H), 6.97 (s, 1 H), 5.46-5.34 (m, 1 H), 5.07 (br s,
1 H), 4.96-4.91 (m, 2 H), 4.14-4.11 (m, 2 H),
3.98 (s, 3 H), 3.71 (t, J = 11.4
Hz, 1 H), 3.13 (d, J = 11.4
Hz, 1 H), 2.77-2.52 (m, 4 H), 2.19-2.18 (m, 1
H), 2.08-1.99 (m, 2 H), 1.98-1.85 (m, 1 H), 1.27-1.25
(m, 1 H). ESI-MS: 456.6 [M - Cl]+.
Anal. Calcd for C27H30ClN5O2:
C, 65.91; H, 6.15; N, 14.23. Found: C, 65.94; H, 6.20; N, 14.29.
Representative
Procedure for Enantioselective Catalytic Alkylation of 5 under Phase-Transfer
Conditions
To a mixture of N-(diphenylmethylene)
glycine tert-butyl ester (5,
295 mg, 1 mmol) and chiral catalyst 1b (46.2mg,
0.1 mmol) in CH2Cl2 (10 mL) was added BnBr
(205 mg, 1.2 mmol). Then a finely powdered and dried mixture of
K2CO3 (138 mg, 1 mmol) and KOH (56 mg, 1 mmol)
was added to the reaction mixture. The resulting suspension was
then vigorously stirred at 20 ˚C till the reaction was
complete (TLC, PE-EtOAc = 20:1). The suspension
was diluted with CH2Cl2 (10 mol), washed with
H2O (2 × 30 mL), dried over MgSO4,
filtered, and concentrated in vacuo. Purification of the residue
by flash column chromatography on SiO2 (PE-EtOAc = 20:1
to 10:1) afforded the desired product 6e (258 mg,
91% yield) as a colorless oil. The ee was determined
by
chiral HPLC analysis [DAICEL Chiralcel OD, hexane-
i-PrOH (98:2), flow rate = 0.4
mL/min, 23 ˚C, λ = 259
nm; t
R (R,
major) = 12.2 min; t
R (S,
minor) = 15.5 min, 99% ee]. The absolute
configuration was determined by comparison of the HPLC retention
time with the authentic sample synthesized by the reported procedure.
Acidic Hydrolysis
of Alkylated Imine 6e to the Corresponding (
R
)-Phenylalanine
The
crude alkylated imine 6e was treated by
refluxing 4 h
in HCl (4 mL, 6 mol/L), followed
by neutralization of the amine hydrochloride using propylene oxide
(0.8 mL) in EtOH. After being filtrated and washed with precooled
Et2O and EtOH, the (R)-phenylalanine
was attained in 75% yield, [α]D
²5 +32
(c 1.0, H2O), lit. [α]D
²5 +33.7
(c 2.0, H2O).