Synlett 2009(9): 1480-1484  
DOI: 10.1055/s-0029-1216742
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

3-Aroylindoles via Copper-Catalyzed Cyclization of N-(2-Iodoaryl)enaminones

Roberta Berninia, Sandro Cacchi*b, Giancarlo Fabrizib, Eleonora Filistib, Alessio Sferrazzaa
a Dipartimento A.B.A.C., Università della Tuscia e Consorzio Universitario ‘La Chimica per l’Ambiente’, Via S. Camillo De Lellis, 01100 Viterbo, Italy
b Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi ‘La Sapienza’, P.le A. Moro 5, 00185 Rome, Italy
Fax: +39(06)49912780; e-Mail: sandro.cacchi@uniroma1.it;
Weitere Informationen

Publikationsverlauf

Received 20 January 2009
Publikationsdatum:
04. Mai 2009 (online)

Abstract

3-Aroylindoles have been prepared via copper-catalyzed cyclization of N-(2-iodoaryl)enaminones, readily available from 2-iodoanilines and α,β-ynones. The reaction tolerates a variety of useful functionalities including ether, keto, cyano, bromo, and chloro substituents. This indole synthesis can also be carried out from 2-iodoanilines and α,β-ynones through a sequential process that omits the isolation of enaminone intermediates.

    References and Notes

  • 1 Wijsmuller WFA. Wanner MJ. Koomen G.-J. Pandit UK. Heterocycles  1986,  24:  1795 
  • 2a Bell MR. D’Ambra TE. Kumar V. Eissenstat MA. Herrmann JL. Wetzel JR. Rosi D. Philion RE. Daum SJ. Hlasta DJ. Kullnig RK. Ackerman JH. Haubrich DR. Luttinger DA. Baizman ER. Miller MS. Ward SJ. J. Med. Chem.  1991,  34:  1099 
  • 2b D’Ambra TE. Estep KG. Bell MR. Eissenstat MA. Josef KA. Ward SJ. Haycock DA. Baizman ER. Casiano FM. Beglin NC. Chippari SM. Grego JD. Kullnig RK. Daley GT. J. Med. Chem.  1992,  35:  124 
  • 2c Sheppard GS. Pireh D. Carrera GM. Bures MG. Heyman HR. Steinman DH. Davidsen SK. Phillips JG. Guinn DE. May PD. Conway RD. Rhein DA. Calhoun WC. Albert DH. Magoc TJ. Carter GW. Summers JB. J. Med. Chem.  1994,  37:  2011 
  • 2d Lehr M. J. Med. Chem.  1997,  40:  2694 
  • 2e Curtin ML. Davidsen SK. Heyman HR. Garland RB. Sheppard GS. Florjancic AS. Xu L. Carrera GM. Steinman DH. Trautmann JA. Albert DH. Magoc TJ. Tapang P. Rhein DA. Conway RG. Luo G. Denissen JF. Marsh KC. Morgan DW. Summers JB. J. Med. Chem.  1998,  41:  74 
  • For the acylation of N-protected indoles, see:
  • 3a Ketcha DM. Gribble GW. J. Org. Chem.  1985,  50:  5451 
  • For the acylation of NH free indoles, see:
  • 3b Ottoni O. Neder A. Dias AKD. Cruz RPA. Equino LB. Org. Lett.  2001,  7:  1005 
  • For the preparation of 3-acylindoles via the Vilsmeier-Haack reaction, see:
  • 3c Sundberg RJ. The Chemistry of Indoles   Academic Press; New York: 1970. 
  • For the acylation of indole Grignard reagents, see:
  • 3d Heacock RA. Kasparek S. Adv. Heterocycl. Chem.  1969,  10:  61 
  • see ref. 3c. For the acylation of 3-indolylzinc chlorides, see:
  • 3e Bergman J. Venemalm L. Tetrahedron  1990,  46:  6061 
  • 3f Faul MM. Winneroski LL. Tetrahedron Lett.  1997,  38:  4749 
  • For other procedures, see:
  • 3g Bergman J. Bäckvall JE. Lindströn JO. Tetrahedron  1973,  29:  971 
  • 3h Eyley SC. Giles RG. Heaney H. Tetrahedron Lett.  1985,  26:  4649 
  • 3i Pindur U. Flo C. Akgun E. Tunali M. Liebigs Ann. Chem.  1986,  9:  1621 
  • 3j Pfeuffer L. Sody E. Pindur U. Chem.-Ztg.  1987,  111:  84 
  • 4a Sakamoto T. Nagano T. Kondo Y. Yamanaka H. Synthesis  1990,  215 
  • 4b Arcadi A. Cacchi S. Carnicellli V. Marinelli F. Tetrahedron  1994,  50:  437 
  • 5 Osuka A. Mori Y. Suzuki H. Chem. Lett.  1982,  2031 
  • For recent reviews, see:
  • 6a Ley SV. Thomas AW. Angew. Chem.  2003,  115:  5558 
  • 6b Evano G. Blanchard N. Toumi M. Chem. Rev.  2008,  108:  3054 
  • 6c Deutsch C. Krause N. Lipshutz BH. Chem. Rev.  2008,  108:  2916 
  • 6d Reymond S. Cossy J. Chem. Rev.  2008,  108:  5359 
  • 6e Alexakis A. Backvall JE. Krause N. Pamies O. Dieguez M. Chem. Rev.  2008,  108:  2796 
  • 6f Yamada K.-i. Tomioka K. Chem. Rev.  2008,  108:  2874 
  • 6g Stanley LM. Sibi MP. Chem. Rev.  2008,  108:  2887 
  • 6h Shibasaki M. Kanai M. Chem. Rev.  2008,  108:  2853 
  • 6i Carril M. SanMartin R. Dominguez E. Chem. Soc. Rev.  2008,  37:  639 
  • 7 Cacchi S. Fab rizi G. Chem. Rev.  2005,  105:  2873 
  • 8 Cacchi S. Fabrizi G. Parisi LM. Org. Lett.  2003,  5:  3843 
  • 9a Cacchi S. Fabrizi G. Filisti E. Org. Lett.  2008,  10:  2629 
  • 9b Bernini R. Cacchi S. Fabrizi G. Sferrazza A. Synthesis  2009,  1209 
  • 10 Karpov AS. Müller TJ. Org. Lett.  2003,  5:  3451 
  • 14 Ge H. Niphakis MJ. Georg GI. J. Am. Chem. Soc.  2008,  130:  3708 
  • 15a Evindar G. Batey RA. Org. Lett.  2003,  5:  133 
  • 15b Evindar G. Batey RA. J. Org. Chem.  2006,  71:  1802 
  • For some recent leading references on the copper-catalyzed construction of the indole ring, see:
  • 16a Cacchi S. Fabrizi G. Parisi LM. Org. Lett.  2003,  5:  3843 
  • 16b Lu B. Ma D. Org. Lett.  2006,  8:  6115 
  • 16c Yuen J. Fang Y.-Q. Lautens M. Org. Lett.  2006,  8:  653 
  • 16d Chen Y. Xie X. Ma D. J. Org. Chem.  2007,  72:  9329 
  • 16e Tanimori S. Ura H. Kirihata M. Eur. J. Org. Chem.  2007,  3977 
  • 16f Hiroaki O. Yusuke O. Shinya O. Nobutaka F. Angew. Chem. Int. Ed.  2007,  46:  2295 
  • 16g Chen Y. Wang Y. Sun Z. Ma D. Org. Lett.  2008,  10:  625 
  • For some recent leading references on the copper-catalyzed functionalization of indole rings, see:
  • 17a Coste A. Toumi M. Wright K. Razafimahaléo V. Couty F. Marrot J. Evano G. Org. Lett.  2008,  10:  3841 
  • 17b Toumi M. Couty F. Marrot J. Evano G. Org. Lett.  2008,  10:  5027 
11

Typical Procedure for the Cyclization of N -(2-Iodoaryl)-enaminones 1 to 3-Acylindoles 2 To a stirred solution of 1d (118.2 mg, 0.25 mmol) in DMF (2.5 mL), CuI (2.4 mg, 0.0125 mmol), 1,10-phenanthroline (2.3 mg, 0.0125 mmol), and K2CO3 (69.0 mg, 0.50 mmol) were added at r.t. The reaction mixture was warmed at 100 ˚C and stirred for 10 h. After cooling, the reaction mixture was diluted with Et2O, washed with 1 N HCl and brine, dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by chromatography on SiO2 [n-hexane-EtOAc, 70:30] to afford 82.8 mg (96% yield) of 2d: white solid; mp 184-185 ˚C. IR (KBr): 3423, 2927, 1601, 1562, 1435, 1223 cm. ¹H NMR (400 MHz, DMSO-d 6): δ = 12.22 (br s, 1 H), 7.84 (d, J = 7.9 Hz, 1 H), 7.60-7.57 (m, 2 H), 7.52 (d, J = 7.9 Hz, 1 H), 7.27 (t, J = 7.9 Hz, 1 H), 7.18 (t, J = 7.8 Hz, 2 H), 7.04-6.92 (m, 4 H), 6.85 (d, J = 7.6 Hz, 1 H), 3.67 (s, 1 H). ¹³C NMR (100.6 MHz, DMSO-d 6): δ = 191.2, 164.3 (d, J CF = 251 Hz), 159.3, 144.4, 137.1 (d, J CF = 22 Hz), 136.3, 133.2, 132.2 (d, J CF = 9 Hz), 129.7, 128.7, 123.5, 122.5, 122.0, 121.1, 115.4, 115.3, 115.1 (d, J CF = 4 Hz), 112.6, 112.4, 55.6. ¹9F NMR (376 MHz, DMSO-d 6): δ = -108.6. Anal. Calcd for C22H16FNO2: C, 76.51; H, 4.67. Found: C, 76.40; H, 4.58.

12

Compounds 2a and 3 were isolated in 30% and 60% yield, respectively, when the reaction was carried out in DMA at 120 ˚C (3 h).

13

Typical Procedure for the Preparation of 3-Acylindoles 2 Omitting the Isolation of Enaminone Intermediates To a stirred solution of 2-iodoaniline (109.5 mg, 0.5 mmol) in MeOH (1.0 mL), 1,3-diphenylprop-2-yn-1-one (154.5 mg, 0.75 mmol) was added at r.t. The reaction mixture was warmed at 120 ˚C and stirred for 48 h. After that period the volatile materials were evaporated at reduced pressure, and CuI (4.8 mg, 0.025 mmol), 1,10-phenanthroline (4.5 mg, 0.025 mmol), K2CO3 (138.0 mg, 1.0 mmol), and DMF (4 mL) were added. The reaction mixture was warmed at 100 ˚C and stirred for 2.5 h. After cooling, the reaction mixture was diluted with Et2O, washed with1 N HCl and brine, dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by chromatography on SiO2 [n-hexane-EtOAc, 75:25] to afford 106 mg (76% yield) of 2a: white solid; mp 223-224 ˚C. IR (KBr): 3055, 1593, 1564, 1450, 1421 cm. ¹H NMR (400 MHz, DMSO-d 6): δ = 12.19 (br s, 1 H), 7.75 (d, J = 7.9 Hz, 1 H), 7.54-7.51 (m, 3 H), 7.40-7.35 (m, 3 H), 7.26-7.10 (m, 7 H). ¹³C NMR (100.6 MHz, DMSO-d 6): δ = 192.6, 144.6, 140.3, 136.3, 132.1, 131.8, 130.1, 129.6, 129.0, 128.7, 128.5, 128.3, 123.4, 121.9, 121.1, 112.7, 112.4. Anal. Calcd for C21H15NO: C, 84.82; H, 5.08. Found: C, 84.71; H, 5.19.