Subscribe to RSS
DOI: 10.1055/s-0029-1216744
A Procedure for Fast and Regioselective Copper-Free Click Chemistry at Room Temperature with p-Toluenesulfonyl Alkyne
Publication History
Publication Date:
04 May 2009 (online)
Abstract
Sulfonyl alkyne group can undergo copper-free cyclization at room temperature with diverse azido compounds. In solvent-free conditions the reaction was fast, yielding 1,4-disubstituted regioisomers with high regioselectivity.
Key words
cycloadditions - regioselectivity - copper-free click chemistry - solvent-free reaction - p-toluenesulfonyl alkyne
- For reviews, see:
-
1a
Kolb HC.Finn MG.Sharpless KB. Angew. Chem. Int. Ed. 2001, 40: 2004 -
1b
Gil MV.Arévalo MJ.López Ó. Synthesis 2007, 1589 - 2
Rostovtsev VV.Green LG.Fokin VV.Sharpless KB. Angew. Chem. Int. Ed. 2002, 41: 2596 - 3
Tornøe CW.Christensen C.Meldal M. J. Org. Chem. 2002, 67: 3057 - 4
Bock VD.Hiemstra H.van Maarseveen JH. Eur. J. Org. Chem. 2006, 51 -
5a
Ladmiral V.Mantovani G.Clarkson GJ.Cauet S.Irwin JL.Haddleton DM. J. Am. Chem. Soc. 2006, 128: 4823 -
5b
Helms B.Mynar JL.Hawker CJ.Fréchet JMJ. J. Am. Chem. Soc. 2004, 126: 15020 -
5c Review:
Lutz J.-F. Angew. Chem. Int. Ed. 2007, 46: 1018 -
6a
Link AJ.Tirell DA. J. Am. Chem. Soc. 2003, 125: 11164 -
6b
Wang Q.Chan TR.Hilgraf R.Fokin VV.Sharpless KB.Finn MG. J. Am. Chem. Soc. 2003, 125: 3192 -
7a
Polito L.Monti D.Caneva E.Delnevo E.Russo G.Prosperi D. Chem. Commun. 2008, 621 -
7b Review:
Nandivada H.Jiang X.Lahann J. Adv. Mater. 2007, 19: 2197 -
8a
André S.Sansone F.Kaltner H.Casnati A.Kopitz J.Gabius H.-J.Ungaro R. ChemBioChem 2009, 9: 1649 -
8b
Gouin SG.Vanquelef E.García Fernández JM.Ortiz Mellet C.Dupradeau F.-Y.Kovensky J. J. Org. Chem. 2007, 72: 9032 -
8c
Diot J.García-Moreno MI.Gouin SG.Ortiz Mellet C.Haupt K.Kovensky J. Org. Biomol. Chem. 2009, 7: 357 -
8d
Lindhorst TK.Patel A. Carbohydr. Res. 2006, 341: 1657 - 9
Chassaing F.Kumarraja M.Sani Souna Sido A.Pale P.Sommer J. Org. Lett. 2007, 9: 883 - 10
Lipshutz BH.Taft BR. Angew. Chem. Int. Ed. 2006, 45: 8235 - 11
Park IS.Kwon MS.Kim Y.Lee JS.Park J. Org. Lett. 2008, 10: 497 - 12
Boren B.Narayan S.Rasmussen LK.Zhang L.Zhao H.Lin Z.Jia G.Fokin VV. J. Am. Chem. Soc. 2008, 130: 8923 -
13a
Agard NJ.Prescher JA.Bertozzi CR. J. Am. Chem. Soc. 2004, 126: 15046 - For reviews, see:
-
13b
Baskin JM.Bertozzi CR. QSAR Comb. Sci. 2007, 26: 1211 -
13c
Lutz J.-F. Angew. Chem. Int. Ed. 2008, 47: 2182 - 14
Turner RB.Jarett AD.Goebel P.Mallon BJ. J. Am. Chem. Soc. 1973, 95: 790 - 15
Codelli JA.Baskin JM.Agard NJ.Bertozzi CR.
J. Am. Chem. Soc. 2008, 130: 11486 - 16
Ning X.Guo J.Wolfert MA.Boons G.-J. Angew. Chem. Int. Ed. 2008, 47: 2253 - 17 To our knowledge, only one previous
report has shown that 1,3-dipolar cycloaddition reaction with azides
could be carried out at room temperature in water with electron-deficient
alkynes. See:
Li Z.Seo TS.Ju J. Tetrahedron. Lett. 2004, 45: 3143 - 18 For a review. see:
Siemsen P.Livingston RC.Diederich F. Angew. Chem. Int. Ed. 2000, 39: 2632 - 19
Angell Y.Burgess K. Angew. Chem. Int. Ed. 2007, 46: 3649 - 20
Rodionov VO.Fokin VV.Finn MG. Angew. Chem. Int. Ed. 2005, 127: 2210 - Acetylenic sulfones undergo a variety of cylizations, see:
-
21a
Zhai H.Parvez M.Back TG. J. Org. Chem. 2007, 72: 3853 -
21b
Weston MH.Nakajima K.Back TG. J. Org. Chem. 2008, 73: 4630 -
21c
Wei H.Cai G.Ma D. Org. Lett. 2005, 7: 5545 -
21d
Vokressensky LG.Borisova TN.Listratova AV.Kulikova LN.Titov AA.Varlamov AV. Tetrahedron Lett. 2006, 47: 4585 -
21e
Back TG.Nakajima K. J. Org. Chem. 2000, 65: 4543 -
21f For a review, see:
Back TG. Tetrahedron 2001, 57: 5263 - 22
Rodios NA. J. Heterocycl. Chem. 1984, 21: 1169 - 24
Moura M.Delacroix S.Postel D.Van Nhien AN. Tetrahedron 2009, 65: 2766
References and Notes
General Procedure
for the Copper-Free Cycloaddition
p-Toluenesulfonyl
alkyne 3 (31 mg, 171 µmol) and
8-azido-3,6-dioxaoctadecanol 4 (30 mg,
171 µmol) were dissolved in CH2Cl2 (1
mL). The solvent was evaporated under reduced pressure at 16 ˚C
(rotavapor, 20 mbar). Complete evap-oration was observed in less
than 5 min, and the stirring was continued under the same conditions
for 2 h. The residue was purified by flash chromatography on SiO2 (2:3
cyclohexane-EtOAc to EtOAc, then 39:1 EtOAc-MeOH)
to give 5a (45 mg, 74%) and 5b (4 mg, 6%) as colorless oils.
1-[8-Hydroxy-3,6-dioxaoctyl]-4-[
p
-toluenesulfonyl]-[1,2,3]-triazole
(5a)
¹H NMR (300 MHz, CDCl3): δ = 8.48
(1 H, s, CHTri), 7.91 (2 H, d, J = 8.5
Hz, arom. H), 7.30 (2 H, d, arom. H),
4.54 (2 H, t, J = 4.6 Hz, CH2CH2N),
3.80 (2 H, t, J = 4.8 Hz, CH2) 3.73
(2 H, t, J = 4.8 Hz, CH2),
3.58-3.53 (6 H, m, 3 × CH2), 2.37
(3 H, s, CH3). ¹³C NMR (75
MHz, CDCl3): δ = 149.0 (CqTri),
145.0 (CqAr), 137.2 (CqAr), 129.9 (CHAr), 128.1 (CHAr), 127.5 (CHTri),
72.7, 72.5, 70.4, 70.2, 68.6 (CH2), 61.7 (CH2OH),
50.1 (CH2N), 21.7 (CH3Ar). HRMS (ES+): m/z calcd for C15H21N3O5NaS:
378.1100; found: 378.1105.
1-[1′,2′:3′,4′-Di-
O
-isopropylidene-6-deoxy-α-
d
-galactopyranosid-6-yl]-4-[
p
-toluensulfonyl]-[1,2,3]-triazole
(18)
[α]D -58
(c 0.5, CH2Cl2). ¹H
NMR (300 MHz, CDCl3): δ = 8.31
(1 H, s, CHTri), 7.92 (2 H, d, J = 8.1
Hz, arom. H), 7.30 (2 H, d, J = 8.1 Hz, arom.
H), 5.50 (1 H, d, J
1,2 = 4.9
Hz, H-1), 4.64 (1 H, dd, J
5,6 = 3.7
Hz, J
6,6
′ = 14.0
Hz, H-6), 4.63 (1 H, dd, J
2,3 = 2.6
Hz, J
3,4 = 7.8 Hz,
H-3), 4.48 (1 H, dd,
J
5,6
′ = 8.5
Hz, H-6¢), 4.34 (1 H, dd, H-2),
4.18 (1 H, dd,
J
4,5 = 1.9
Hz, H-4), 4.12 (1 H, ddd, H-5), 2.40
(3 H, s, CH3), 1.52, 1.37, 1.34, 1.32 (12 H, 4 Ž s,
4 Ž isop. CH3). ¹³C
NMR (75 MHz, CDCl3): δ = 148.9
(CqTri), 145.0 (CqAr), 137.0 (CqAr), 129.9 (CHAr), 128.3 (CHAr),
127.2 (CHTri), 110.0 [C(CH3)2],
109.1 [C(CH3)2],
71.0, 70.3, 67.0, 66.7 (C-2,
C-3, C-4, C-5), 51.1 (C-6),
25.8, 24.9, 24.6 (CH3), 21.6 (CH3Ar). HRMS
(ES+): m/z calcd
for C21H27N3O7NaS: 488.1467;
found: 488.1474.