Subscribe to RSS
DOI: 10.1055/s-0029-1216880
Stereoselective Olefination Reactions Promoted by Rieke Manganese
Publication History
Publication Date:
29 June 2009 (online)
Abstract
A study of the advantages of using manganese, an inexpensive and nontoxic metal, to perform stereoselective β-elimination reactions and to promote sequential olefination reactions of aldehydes to obtain α,β-unsaturated esters and amides is presented. Various elimination reactions, all of them characterized by occurring with complete stereoselectivity and in high yields, were performed using active manganese (Mn*) as metalating agent. This ability of manganese has been applied to develop a novel and direct synthesis of (E)-α,β-unsaturated esters or amides and (Z)-α,β-unsaturated α-halo esters and α-choroamides through a Mn*-mediated sequential olefination protocol of aldehydes with dichloro esters or amides and trihalo esters or trichloroamides, respectively.
Key words
manganese - elimination reactions - stereoselectivity - α,β-unsaturated esters - α,β-unsaturated amides - metalation
- 1 No special precaution is required
due to the low toxicity of manganese and manganese salts obtained
after the aqueous work-up of organomanganese reactions, see:
Cahiez G. An. Quim. 1995, 91: 561 - 3 The reduction potential of Mn is
included between Zn+²/Zn0 and
Mg+²/Mg0:
Handbook of Chemistry and Physics
62nd ed.:
CRC
Press;
Boca Raton:
1982.
- 4
Takai K.Ueda T.Hayashi T.Moriwake T. Tetrahedron Lett. 1996, 37: 7049 - 5
Kim S.-H.Hanson MV.Rieke RD. Tetrahedron Lett. 1996, 37: 2197 - 6
Fürstner A.Brunner H. Tetrahedron Lett. 1996, 37: 7009 - 7
Tang J.Shinokubo H.Oshima K. Synlett 1998, 1075 - 8
Cahiez G.Martin A.Delacroix T. Tetrahedron Lett. 1999, 40: 6407 - 9 For some recent synthetic applications
of manganese in organic synthesis, see:
Concellón JM.Rodríguez-Solla H.del Amo V. Chem. Eur. J. 2008, 14: 10184 - For recent synthesis of α,β-unsaturated esters, see:
-
10a
Ferguson ML.Senecal TD.Groendyke TM.Mapp AK. J. Am. Chem. Soc. 2006, 128: 4576 -
10b
List B.Doehring A.Fonseca MTH.Job A.Torres RR. Tetrahedron 2006, 62: 476 -
10c
Zeitler K. Org. Lett. 2006, 8: 637 -
10d
Karimi B.Enders D. Org. Lett. 2006, 8: 1237 -
10e
Concellón JM.Rodríguez-Solla H.Méjica C. Tetrahedron 2006, 62: 3292 -
10f
Li J.-H.Wang D.-P.Xie Y.-X. Tetrahedron Lett. 2005, 46: 4941 -
10g
Feuillet FJP.Cheeseman M.Mahon MF.Bull SD. Org. Biomol. Chem. 2005, 3: 2976 -
10h
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4490 -
10i
Feuillet FJP.Robinson DEJE.Bull SD. Chem. Commun. 2003, 2184 -
10j
Aggarwal VK.Fulton JR.Sheldon CG.de Vicente J. J. Am. Chem. Soc. 2003, 125: 6034 -
10k
Hon Y.-S.Lu L.Chang R.-C.Lin S.-W.Sun P.-P.Lee C.-F. Tetrahedron 2000, 56: 9269 - 11
Concellón JM.Rodríguez-Solla H. Chem. Soc. Rev. 2004, 33: 599 - For recent synthesis of α,β-unsaturated amides, see:
-
12a
Park JH.Kim SY.Kim SM.Chung YK. Org. Lett. 2007, 9: 2465 -
12b
Hernández-Fernández E.Fernández-Zertuche M.García-Barradas O.Muñoz-Muñiz O.Ordoñez M. Synlett 2006, 440 -
12c
Xu J.Burton DJ. J. Org. Chem. 2005, 70: 4346 -
12d
Concellón JM.Bardales E. Eur. J. Org. Chem. 2004, 1523 -
12e
Hu Y.Floss HG. J. Am. Chem. Soc. 2004, 126: 3837 -
12f
Leibold T.Sasse F.Reichenbach H.Höfle G. Eur. J. Org. Chem. 2004, 431 -
12g
Han B.McPhail KL.Ligresti A.Di Marzo V.Gerwick WH. J. Nat. Prod. 2003, 66: 1364 -
12h
Andrus MB.Meredith EL.Hicken EJ.Simmons BL.Glancey RR.Ma W. J. Org. Chem. 2003, 68: 8162 -
12i
Chen J.Forsyth CJ. J. Am. Chem. Soc. 2003, 125: 8734 -
12j
Concellón JM.Bardales E. J. Org. Chem. 2003, 68: 9492 -
12k
Concellón JM.Pérez-Andrés JA.Rodríguez-Solla H. Chem. Eur. J. 2001, 7: 3062 - 13
Concellón JM.Rodríguez-Solla H.del Amo V. Synlett 2006, 315 -
14a
Concellón JM.Rodríguez-Solla H.Díaz P.Llavona R. J. Org. Chem. 2007, 72: 4396 -
14b
Concellón JM.Rodríguez-Solla H.Díaz P. J. Org. Chem. 2007, 72: 7974 -
15a
Concellón JM.Rodríguez-Solla H.Díaz P. Org. Biomol. Chem. 2008, 6: 451 -
15b
Concellón JM.Rodríguez-Solla H.Díaz P. Org. Biomol. Chem. 2008, 6: 2934 - 16
Concellón JM.Pérez-Andrés J. A.Rodríguez-Solla H. Angew. Chem. Int. Ed. 2000, 39: 2773 - Manganese(II) enolates and related species have been proposed as intermediates in other manganese-promoted transformations:
-
17a
Dessole G.Bernardi L.Bonini BF.Capitò E.Fochi M.Herrera RP.Ricci A.Cahiez G. J. Org. Chem. 2004, 69: 8525 -
17b
Tang J.Shinokubo H.Oshima K. Tetrahedron 1999, 55: 1893 -
17c
Cahiez G.Figadère B.Cléry P. Tetrahedron Lett. 1994, 35: 6295 - 18 Similar transition state models
have been proposed to explain the selectivity in other Mn(II)-promoted
reactions:
Oshima K. J. Organomet. Chem. 1999, 575: 1 - For recent reviews of SmI2-promoted sequential reactions, see:
-
19a
Molander GA.Harris CR. Chem. Rev. 1996, 92: 307 -
19b
Molander GA.Harris CR. Tetrahedron 1998, 54: 3321 - For recent reviews of synthetic applications of SmI2 see:
-
19c
Krief A.Laval AM. Chem. Rev. 1999, 99: 745 -
19d
Steel PG. J. Chem. Soc., Perkin Trans. 1 2001, 2727 -
19e
Kagan HB. Tetrahedron 2003, 59: 10351 -
19f
Dahlén A.Hilmerson G. Eur. J. Inorg. Chem. 2004, 3393 - For some reviews on the synthetic applications of CrCl2, see:
-
20a
Takai K. Org. React. 2004, 64: 253 -
20b
Liu Y.Wu H.Zhang Y. Synth. Commun. 2001, 31: 47 -
20c
Matsubara S.Oshima K. In Modern Carbonyl OlefinationTakeda T. Wiley-VCH; Weinheim: 2004. Chap. 5. -
20d
Fürstner A. Chem. Rev. 1999, 99: 991 -
20e
Wessjohann LA.Scheid G. Synthesis 1999, 1 - Some examples of CrCl2-promoted sequential reactions:
-
20f
Barma DK.Kundu A.Zhang H.Mioskowski C.Falck JR. J. Am. Chem. Soc. 2003, 125: 3218 -
21a
Barma DK.Kundu A.Bandyopadhyay A.Kundu A.Sangras B.Briot A.Mioskowski C.Falck JR. Tetrahedron Lett. 2004, 45: 5917 -
21b Only one example (ethyl
3-phenylprop-2-enoate) has been synthesized using a sequential reaction
of ethyl dibromoacetate and benzaldehyde promoted by Fe(0):
Falk JR.Bejot DK.Bandyopadhyay A.Joseph S.Mioskowski C. J. Org. Chem. 2006, 71: 8178 -
21c Using a zinc-metal-promoted olefination:
Ishino Y.Mihara M.Nishihama S.Nishiguchi I. Bull. Chem. Soc. Jpn. 1998, 71: 2669 -
21d Using an Sml2-
or CrCl2-promoted olefination:
Concellón J. M.Concellón C.Méjica C. J. Org. Chem. 2005, 70: 6111 -
22a
Nieman JA.Coleman JE.Wallace DJ.Piers E.Lim LY.Roberge M.Anderson RJ. J. Nat. Prod. 2003, 66: 183 -
22b
Shealy YF.Riordan JM.Frye JL.Simpson-Herren L.Sani BP.Hill DL. J. Med. Chem. 2003, 46: 1931 -
22c
Marrano C.de Macedo P.Keillor JW. Bioorg. Med. Chem. 2001, 9: 1923 -
22d
Choo HYP.Peak KH.Park J.Kim DH.Chung HS. Eur. J. Med. Chem. 2000, 35: 643 -
22e
Meinke PT.Ayer MB.Colletti SL.Li C.Lim J.Ok D.Salva S.Schmatz DM.Shih TL.Shoop WL.Warmke LM.Wyvratt MJ.Zakson-Aiken M.Fisher MH. Bioorg. Med. Chem. Lett. 2000, 10: 2371 -
22f
Takami H.Koshimura H.Kishibayashi N.Ishii A.Nonaka H.Aoyama S.Kase H.Kumazawa T. J. Med. Chem. 1996, 39: 5047 - 24 The coupling constant between
the olefinic protons of compounds 5 ranging
between J = 14.9
and 15.4 Hz were in accordance with the average literature values:
Silverstein RM.Bassler GC.Morrill TC. In Spectrometric Identification of Organic Compounds John Wiley & Sons; New York: 1991. - 25 Wittig reactions carried out with
enolizable carbonyl compounds can generate alkenes in very low yields:
Maryanoff BE.Reitz AB. Chem. Rev. 1989, 89: 863 - 26
Martín R.Romea P.Tey C.Urpí F.Vilarrasa J. Synlett 1997, 1414 - 27
Kelly SE. In Comprehensive Organic Synthesis Vol. 1:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.730 -
28a
Larock LC. Comprehensive Organic Transformations 2nd ed: Wiley-VCH; New York: 1999. p.715 -
28b
Johnson CR.Braun MP. J. Am. Chem. Soc. 1993, 115: 11014 -
28c
Johnson CR.Harikrishnan LS.Golebiowski A. Tetrahedron Lett. 1994, 35: 7735 -
29a
Li W.Li J.Wan Z.-K.Wu J.Massefski W. Org. Lett. 2007, 9: 4607 -
29b
Effenberger F.Zoller G. Tetrahedron 1988, 44: 5573 - 30
Oda Y.Matsuo S.Saito K. Tetrahedron Lett. 1992, 33: 97 -
31a
Chang M.-Y.Sun P.-P.Chen S.-T.Chang N.-C. Tetrahedron Lett. 2003, 44: 5271 -
31b
Filigheddu SN.Taddei M. Tetrahedron Lett. 2002, 43: 3857 -
32a
Dollt H.Zabel V. Aust. J. Chem. 1999, 52: 259 -
32b
Kakehi A.Ito S. J. Org. Chem. 1974, 39: 1542 -
33a
Quing F.-L.Zhang X. Tetrahedron Lett. 2001, 42: 5029 -
33b
Tanaka K.Katsumura S. Org. Lett. 2000, 2: 373 -
33c
Dai W.-M.Wu J.Fong KC.Lee MYH.Lau CW. J. Org. Chem. 1999, 64: 5062 -
33d
Zhou SM.Yan YL.Deng MZ. Synlett 1998, 198 -
33e
Rossi T.Bellina F.Bechini C.Mannina L.Vergamini P. Tetrahedron 1998, 54: 135 - 34
Mironiuk-Puchalska E.Koaczkowska E.Sas W. Tetrahedron Lett. 2002, 43: 8351 - 35
Falck JR.Bandyopadhyay A.Barma DK.Shin D.-S.Kundu A.Krishna Kishore RV. Tetrahedron Lett. 2004, 45: 3039 - 36
Concellón JM.Huerta M.Llavona R. Tetrahedron Lett. 2004, 45: 4665 - 37
Silverstein RM.Bassler GC.Morrill TC. In Spectrometric Identification of Organic Compounds Appendix F, Chap. 4: JohnWiley & Sons; New York: 1991. p.2211 -
38a
Duncan AP.Leighton JL. Org. Lett. 2004, 6: 4117 -
38b
Huddleston RR.Krische MJ. Org. Lett. 2003, 5: 1143 - 39 The chloromethyllithium was generated
in situ from chloroiodomethane and methyllithium:
Barluenga J.Baragaña B.Alonso A.Concellón JM. J. Chem. Soc., Chem. Commun. 1994, 969 - 40
Gassman PG.Hodgson PKG.Balchunis RJ. J. Am. Chem. Soc. 1976, 98: 1275 - 41
Douat C.Heitz A.Martinez J.Fehrentz J.-A. Tetrahedron Lett. 2000, 41: 37
References
Aldrich catalogue (2009-2010): manganese powder (325 mesh): 250 g = 44 ı.
23When the minor diastereoisomer was not observed the E/Z ratio was assigned >98:2.