Synthesis 2010(1): 49-56  
DOI: 10.1055/s-0029-1217090
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Towards Modular Design of Chiroptically Switchable Molecules Based on Formation and Cleavage of Metal-Ligand Coordination Bonds

Vadim A. Soloshonok*, Hisanori Ueki
Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
Fax: +1(405)3256111; e-Mail: vadim@ou.edu;
Weitere Informationen

Publikationsverlauf

Received 10 July 2009
Publikationsdatum:
26. Oktober 2009 (online)

Abstract

The results presented in this paper demonstrate that the proposed design of C 2-symmetric, pentadentate achiral or chiral ligands 8a-d and 15 allows to generate, upon coordination with Ni(II) and Pd(II), the corresponding diastereomeric complexes possessing three new elements of chirality: stereogenic axis, center, and helix. Of particular importance is that due to the specific steric characteristics of the designed ligands the formation of the corresponding diastereomeric products is highly stereoselective allowing preparation of only two out of four possible stereochemical combinations. For instance, each diastereoisomeric product (R a′,P h′,S c′)-9a and (R a′,M h′,R c′)-12a can be selectively prepared and characterized in solid state, simply by the choice of the chelating metal [Ni(II) or Pd(II)]. Furthermore, introduction of stereochemical information into the ligands design with application of a simple chiral ‘Amine Module’ allows for complete transfer of the corresponding stereochemistry to the newly generated axial, helical, and central chirality. For example, starting with chiral ligand (R)-15, out of eight possible products, only a single product of (R c,R a,P h,S c) absolute configuration was obtained in the solid state. Taking into account the modular nature of this design, one may agree that modification of the three major ‘phenone’, ‘acid’, and ‘amine’ modules, or application of different metals, will allow for virtually unlimited structural and functional flexibility in fine-tuning the diastereomeric relationships of this type of complexes making them more selective and controllable by an external stimulus.

    References

  • For reviews, see:
  • 1a Molecular Switches   Feringa BL. Wiley-VCH; Weinheim: 2001. 
  • 1b Feringa BL. Koumura N. van Delden RA. ter Wiel MKJ. Appl. Phys. A  2002,  75:  301 
  • 1c de Silva AP. Gunaratne HQ. Gunnlaugsson T. Huxley AJM. McCoy CP. Rademacher JT. Rice TE. Chem. Rev.  1997,  97:  1515 
  • 1d Rambidi NG. Microelectron. Eng.  2003,  69:  485 
  • For recent publications, see:
  • 2a Kapetanakis E. Douvas AM. Velessiotis D. Makarona E. Argitis P. Glezos N. Normand P. Adv. Mater.  2008,  20:  4568 
  • 2b Rath AK. Dhara K. Banerjee P. Pal AJ. Langmuir  2008,  24:  5937 
  • 2c Das BC. Pal AJ. Org. Electron.  2008,  9:  39 
  • 2d Facchetti A. Letizia J. Yoon M.-H. Mushrush M. Katz HE. Marks TJ. Chem. Mater.  2004,  16:  4715 
  • 2e Schindler F. Lupton JM. Mueller J. Feldmann J. Scherf U. Nat. Mater.  2006,  5:  141 
  • 2f Liu Z. Yasseri AA. Loewe RS. Lysenko AB. Malinovskii VL. Zhao Q. Surthi S. Li Q. Misra V. Lindsey JS. Bocian DF. J. Org. Chem.  2004,  69:  5568 
  • 3a Zelikovich L. Libman J. Shanzer A. Nature  1995,  374:  790 
  • 3b Kalny D. Elhabiri M. Moav T. Vaskevich A. Rubinstein I. Shanzer A. Albrecht-Gary A.-M. Chem. Commun.  2002,  1426 
  • 3c Plenio H. Aberle C. Chem. Eur. J.  2001,  7:  4438 
  • 3d Janek J. Nat. Mater.  2009,  8:  88 
  • 3e Fukui M. Mori T. Inoue Y. Rathore R. Org. Lett.  2007,  9:  3977 
  • 3f Deng J. Song N. Zhou Q. Su Z. Org. Lett.  2007,  9:  5393 
  • 3g Mori T. Inoue Y. J. Phys. Chem. A  2005,  109:  2728 
  • 3h Shie T.-L. Lin C.-H. Lin S.-L. Yang D.-Y. Eur. J. Org. Chem.  2007,  4831 
  • 3i Roehr H. Trieflinger C. Rurack K. Daub J. Chem. Eur. J.  2006,  12:  689 
  • 3j Siemeling U. Scheppelmann I. Heinze J. Neumann B. Stammler A. Stammler H.-G. Chem. Eur. J.  2004,  10:  5661 
  • 3k Aubert N. Troiani V. Gross M. Solladie N. Tetrahedron Lett.  2002,  43:  8405 
  • 3l Collin J.-P. Kern J.-M. Raehm L. Sauvage J.-P. Mol. Switches  2001,  249 
  • 3m Ambroise A. Wagner RW. Rao PD. Riggs JA. Hascoat P. Diers JR. Seth J. Lammi RK. Bocian DF. Holten D. Lindsey JS. Chem. Mater.  2001,  13:  1023 
  • 4a Bissel RA. Lrdova E. Kaifer AE. Stoddart JF. Nature  1994,  369:  133 
  • 4b Ashton PR. Balzani V. Becher J. Credi A. Fyfe MCT. Mattersteig G. Menzer S. Nielsen MB. Raymo FM. Stoddart JF. Venturi M. Williams DJ. J. Am. Chem. Soc.  1999,  121:  3951 
  • 4c Bauer M. Mgtle FV. Chem. Ber.  1992,  125:  1675 
  • 4d Dichtel WR. Miljanic OS. Zhang W. Spruell JM. Patel K. Aprahamian I. Heath JR. Stoddart JF. Acc. Chem. Res.  2008,  41:  1750 
  • 4e Stoddart JF. Colquhoun HM. Tetrahedron  2008,  64:  8231 
  • 4f Kay ER. Leigh DA. Pure Appl. Chem.  2008,  80:  17 
  • 4g Kim Y.-H. Goddard WA. J. Phys. Chem. C  2007,  111:  4831 
  • 4h Saha S. Stoddart JF. Chem. Soc. Rev.  2007,  36:  77 
  • 4i Flood AH. Wong EW. Stoddart JF. Chem. Phys.  2006,  324:  280 
  • 4j Stoddart JF. Pure Appl. Chem.  2005,  77:  1089 
  • 4k Flood AH. Peters AJ. Vignon SA. Steuerman DW. Tseng H.-R. Kang S. Heath JR. Stoddart JF. Chem. Eur. J.  2004,  10:  6558 
  • 4l Steuerman DW. Tseng H.-R. Peters AJ. Flood AH. Jeppesen JO. Nielsen KA. Stoddart JF. Health JR. Angew. Chem. In. Ed.  2004,  43:  6486 
  • For reviews, see:
  • 5a Special issue on ‘Photochromism: Memories and Switches’: Chem. Rev.  2000,  100:  1685-1890  
  • 5b Feringa BL. Acc. Chem. Res.  2001,  34:  504 
  • For recent publications, see:
  • 6a Feringa BL. Delden RA. Wiel MKJ. Mol. Switches  2001,  123 
  • 6b Oosterling MLCM. Schoevaars AM. Haitjema KJ. Feringa BL. Isr. J. Chem.  1997,  36:  341 
  • 6c Feringa BL. Huck PM. Schoevaars AM. Adv. Mater.  1996,  8:  681 
  • 6d Pijper D. Jongejan MGM. Meetsma A. Feringa BL. J. Am. Chem. Soc.  2008,  130:  4541 
  • 6e Geertsema EM. Hoen R. Meetsma A. Feringa BL. Eur. J. Org. Chem.  2006,  16:  3596 
  • 6f Feringa BL. Delden RA. Wiel MKJ. Pure Appl. Chem.  2003,  75:  563 
  • 6g Van Delden RA. Ter Wiel MKJ. Feringa BL. Chem. Commun.  2004,  200 
  • 6h Delden RA. Mecca T. Rosini C. Feringa BL. Chem. Europ. J.  2004,  10:  61 
  • 6i Zheng J. Qiao W. Wan X. Gao JP. Wang ZY. Chem. Mater.  2008,  20:  6163 
  • 6j Wang ZY. Todd EK. Meng XS. Gao JP. J. Am. Chem. Soc.  2005,  127:  11552 
  • 7a Shinkai S. Ikeda M. Sugasaki A. Takeuchi M. Acc. Chem. Res.  2001,  34:  494 
  • 7b Jiang X. Lim Y.-K. Zhang BJ. Opsitnick EA. Baik M.-H. Lee D. J. Am. Chem. Soc.  2008,  130:  16812 
  • 7c Li Y. Wang T. Liu M. Soft Matter  2007,  3:  1312 
  • 7d Qiu Y. Chen P. Guo P. Li Y. Liu M. Adv. Mater.  2008,  20:  2908 
  • 7e Canary JW. Zahn S. Chiu Y.-H. Santos O. Liu J. Zhu L. Enantiomer  2000,  5:  397 
  • 8 Soloshonok VA. Ueki H. Moore JL. Ellis TK. J. Am. Chem. Soc.  2007,  129:  3512 
  • 9 Kawamoto T. Hammes BS. Haggerty B. Yap GPA. Rheingold AL. Borovik AS. J. Am. Chem. Soc.  1996,  118:  285 
  • 10 Hamuro Y. Geib SJ. Hamilton AD. Angew. Chem., Int. Ed. Engl.  1994,  33:  446 
  • 11 Preston AJ. Fraenkel G. Chow A. Gallucci JC. Parquette JR. J. Org. Chem.  2003,  68:  22 
  • 12 Ramalingam V. Domaradzki ME. Jang S. Muthyala RS. Org. Lett.  2008,  10:  3315 
  • 13a Ueki H. Ellis TK. Martin CH. Soloshonok VA. Eur. J. Org. Chem.  2003,  1954 
  • 13b Ueki H. Ellis TK. Martin CH. Bolene SB. Boettiger TU. Soloshonok VA. J. Org. Chem.  2003,  68:  7104 
  • 13c Soloshonok VA. Cai C. Hruby VJ. Angew. Chem. In. Ed.  2000,  39:  2172 
  • 13d Soloshonok VA. Cai C. Yamada T. Ueki H. Ohfune Y. Hruby VJ. J. Am. Chem. Soc.  2005,  127:  15296 
  • 13e Soloshonok VA. Ueki H. J. Am. Chem. Soc.  2007,  129:  2426 
  • 13f Soloshonok VA. Cai C. Hruby VJ. Tetrahedron Lett.  2000,  41:  135 
  • 13g Yamada T. Okada T. Sakaguchi K. Ohfune Y. Ueki H. Soloshonok VA. Org. Lett.  2006,  8:  5625 
  • 14a Soloshonok VA. Belokon YN. Kuzmina NA. Maleev VI. Svistunova NY. Solodenko VA. Kukhar VP. J. Chem. Soc., Perkin Trans. 1  1992,  1525 
  • 14b Soloshonok VA. Cai C. Hruby VJ. Tetrahedron: Asymmetry  1999,  10:  4265 
  • 14c Soloshonok VA. Avilov DV. Kukhar VP. Meervelt LV. Mischenko N. Tetrahedron Lett.  1997,  38:  4903 
  • 14d Soloshonok VA. Avilov DV. Kukhar VP. Tetrahedron: Asymmetry  1996,  7:  1547 
  • 14e Soloshonok VA. Avilov DV. Kukhar VP. Tararov VI. Saveleva TF. Churkina TD. Ikonnikov NS. Kochetkov KA. Orlova SA. Pysarevsky AP. Struchkov YT. Raevsky NI. Belokon YN. Tetrahedron: Asymmetry  1995,  6:  1741 
  • 14f Soloshonok VA. Cai C. Hruby VJ. Org. Lett.  2000,  2:  747 
  • 15a Soloshonok VA. Ueki H. Ellis TK. Tetrahedron Lett.  2005,  46:  941 
  • 15b Soloshonok VA. Ueki H. Ellis TK. Yamada T. Ohfune Y. Tetrahedron Lett.  2005,  46:  1107 
  • 15c Soloshonok VA. Ellis TK. Synlett  2006,  533 
  • 15d Soloshonok VA. Ueki H. Ellis TK. Chim. Oggi/Chem. Today  2008,  26:  51 
  • 15e Yamada T. Sakaguchi K. Shinada T. Ohfune Y. Soloshonok VA. Tetrahedron: Asymmetry  2008,  19:  2789 
  • 15f Soloshonok VA. Ueki H. Ellis TK. Synlett  2009,  704 
  • 16 Ellis TK. Ueki H. Yamada T. Ohfune Y. Soloshonok VA. J. Org. Chem.  2006,  71:  8572 
  • 17 Moore JL. Taylor SM. Soloshonok VA. ARKIVOC  2005,  (vi):  287 
18

We could not find in the literature the corresponding priority rules which exactly state that the coordinated element has higher priority over the noncoordinated equivalent.