Abstract
The results presented in this paper demonstrate that the proposed
design of C
2 -symmetric, pentadentate
achiral or chiral ligands 8a -d and 15 allows
to generate, upon coordination with Ni(II) and Pd(II), the corresponding
diastereomeric complexes possessing three new elements of chirality:
stereogenic axis, center, and helix. Of particular importance is
that due to the specific steric characteristics of the designed
ligands the formation of the corresponding diastereomeric products
is highly stereoselective allowing preparation of only two out of
four possible stereochemical combinations. For instance, each diastereoisomeric
product (R
a ′,P
h ′,S
c ′)-9a and (R
a ′,M
h ′,R
c ′)-12a can be selectively prepared and characterized
in solid state, simply by the choice of the chelating metal [Ni(II)
or Pd(II)]. Furthermore, introduction of stereochemical
information into the ligands design with application of a simple
chiral ‘Amine Module’ allows for complete transfer
of the corresponding stereochemistry to the newly generated axial,
helical, and central chirality. For example, starting with chiral
ligand (R )-15 ,
out of eight possible products, only a single product of (R
c ,R
a ,P
h ,S
c )
absolute configuration was obtained in the solid state. Taking into
account the modular nature of this design, one may agree that modification
of the three major ‘phenone’, ‘acid’,
and ‘amine’ modules, or application of different
metals, will allow for virtually unlimited structural and functional
flexibility in fine-tuning the diastereomeric relationships of this
type of complexes making them more selective and controllable by
an external stimulus.
Key words
chiral molecular switches - macromolecular ligands - nickel - palladium
References
For reviews, see:
<A NAME="RM03709SS-1A">1a </A>
Molecular
Switches
Feringa BL.
Wiley-VCH;
Weinheim:
2001.
<A NAME="RM03709SS-1B">1b </A>
Feringa BL.
Koumura N.
van Delden RA.
ter Wiel MKJ.
Appl. Phys. A
2002,
75:
301
<A NAME="RM03709SS-1C">1c </A>
de Silva AP.
Gunaratne HQ.
Gunnlaugsson T.
Huxley AJM.
McCoy CP.
Rademacher JT.
Rice TE.
Chem.
Rev.
1997,
97:
1515
<A NAME="RM03709SS-1D">1d </A>
Rambidi NG.
Microelectron. Eng.
2003,
69:
485
For recent publications, see:
<A NAME="RM03709SS-2A">2a </A>
Kapetanakis E.
Douvas AM.
Velessiotis D.
Makarona E.
Argitis P.
Glezos N.
Normand P.
Adv.
Mater.
2008,
20:
4568
<A NAME="RM03709SS-2B">2b </A>
Rath AK.
Dhara K.
Banerjee P.
Pal AJ.
Langmuir
2008,
24:
5937
<A NAME="RM03709SS-2C">2c </A>
Das BC.
Pal AJ.
Org. Electron.
2008,
9:
39
<A NAME="RM03709SS-2D">2d </A>
Facchetti A.
Letizia J.
Yoon M.-H.
Mushrush M.
Katz HE.
Marks TJ.
Chem. Mater.
2004,
16:
4715
<A NAME="RM03709SS-2E">2e </A>
Schindler F.
Lupton JM.
Mueller J.
Feldmann J.
Scherf U.
Nat.
Mater.
2006,
5:
141
<A NAME="RM03709SS-2F">2f </A>
Liu Z.
Yasseri AA.
Loewe RS.
Lysenko AB.
Malinovskii VL.
Zhao Q.
Surthi S.
Li Q.
Misra V.
Lindsey JS.
Bocian DF.
J. Org. Chem.
2004,
69:
5568
<A NAME="RM03709SS-3A">3a </A>
Zelikovich L.
Libman J.
Shanzer A.
Nature
1995,
374:
790
<A NAME="RM03709SS-3B">3b </A>
Kalny D.
Elhabiri M.
Moav T.
Vaskevich A.
Rubinstein I.
Shanzer A.
Albrecht-Gary A.-M.
Chem. Commun.
2002,
1426
<A NAME="RM03709SS-3C">3c </A>
Plenio H.
Aberle C.
Chem. Eur. J.
2001,
7:
4438
<A NAME="RM03709SS-3D">3d </A>
Janek J.
Nat.
Mater.
2009,
8:
88
<A NAME="RM03709SS-3E">3e </A>
Fukui M.
Mori T.
Inoue Y.
Rathore R.
Org. Lett.
2007,
9:
3977
<A NAME="RM03709SS-3F">3f </A>
Deng J.
Song N.
Zhou Q.
Su Z.
Org. Lett.
2007,
9:
5393
<A NAME="RM03709SS-3G">3g </A>
Mori T.
Inoue Y.
J. Phys. Chem. A
2005,
109:
2728
<A NAME="RM03709SS-3H">3h </A>
Shie T.-L.
Lin C.-H.
Lin S.-L.
Yang D.-Y.
Eur. J. Org. Chem.
2007,
4831
<A NAME="RM03709SS-3I">3i </A>
Roehr H.
Trieflinger C.
Rurack K.
Daub J.
Chem. Eur. J.
2006,
12:
689
<A NAME="RM03709SS-3J">3j </A>
Siemeling U.
Scheppelmann I.
Heinze J.
Neumann B.
Stammler A.
Stammler H.-G.
Chem. Eur. J.
2004,
10:
5661
<A NAME="RM03709SS-3K">3k </A>
Aubert N.
Troiani V.
Gross M.
Solladie N.
Tetrahedron Lett.
2002,
43:
8405
<A NAME="RM03709SS-3L">3l </A>
Collin
J.-P.
Kern J.-M.
Raehm L.
Sauvage J.-P.
Mol. Switches
2001,
249
<A NAME="RM03709SS-3M">3m </A>
Ambroise A.
Wagner RW.
Rao PD.
Riggs JA.
Hascoat P.
Diers JR.
Seth J.
Lammi RK.
Bocian DF.
Holten D.
Lindsey JS.
Chem. Mater.
2001,
13:
1023
<A NAME="RM03709SS-4A">4a </A>
Bissel RA.
Lrdova E.
Kaifer AE.
Stoddart JF.
Nature
1994,
369:
133
<A NAME="RM03709SS-4B">4b </A>
Ashton PR.
Balzani V.
Becher J.
Credi A.
Fyfe MCT.
Mattersteig G.
Menzer S.
Nielsen MB.
Raymo FM.
Stoddart JF.
Venturi M.
Williams DJ.
J. Am. Chem. Soc.
1999,
121:
3951
<A NAME="RM03709SS-4C">4c </A>
Bauer M.
Mgtle FV.
Chem. Ber.
1992,
125:
1675
<A NAME="RM03709SS-4D">4d </A>
Dichtel WR.
Miljanic OS.
Zhang W.
Spruell JM.
Patel K.
Aprahamian I.
Heath JR.
Stoddart JF.
Acc.
Chem. Res.
2008,
41:
1750
<A NAME="RM03709SS-4E">4e </A>
Stoddart JF.
Colquhoun HM.
Tetrahedron
2008,
64:
8231
<A NAME="RM03709SS-4F">4f </A>
Kay ER.
Leigh DA.
Pure Appl. Chem.
2008,
80:
17
<A NAME="RM03709SS-4G">4g </A>
Kim Y.-H.
Goddard WA.
J. Phys.
Chem. C
2007,
111:
4831
<A NAME="RM03709SS-4H">4h </A>
Saha S.
Stoddart JF.
Chem. Soc. Rev.
2007,
36:
77
<A NAME="RM03709SS-4I">4i </A>
Flood AH.
Wong EW.
Stoddart JF.
Chem. Phys.
2006,
324:
280
<A NAME="RM03709SS-4J">4j </A>
Stoddart JF.
Pure Appl. Chem.
2005,
77:
1089
<A NAME="RM03709SS-4K">4k </A>
Flood AH.
Peters AJ.
Vignon SA.
Steuerman DW.
Tseng H.-R.
Kang S.
Heath JR.
Stoddart JF.
Chem. Eur. J.
2004,
10:
6558
<A NAME="RM03709SS-4L">4l </A>
Steuerman DW.
Tseng H.-R.
Peters AJ.
Flood AH.
Jeppesen JO.
Nielsen KA.
Stoddart JF.
Health JR.
Angew. Chem. In. Ed.
2004,
43:
6486
For reviews, see:
<A NAME="RM03709SS-5A">5a </A> Special issue on ‘Photochromism: Memories
and Switches’: Chem. Rev.
2000,
100:
1685-1890
<A NAME="RM03709SS-5B">5b </A>
Feringa BL.
Acc. Chem. Res.
2001,
34:
504
For recent publications, see:
<A NAME="RM03709SS-6A">6a </A>
Feringa BL.
Delden RA.
Wiel MKJ.
Mol. Switches
2001,
123
<A NAME="RM03709SS-6B">6b </A>
Oosterling MLCM.
Schoevaars AM.
Haitjema KJ.
Feringa BL.
Isr. J. Chem.
1997,
36:
341
<A NAME="RM03709SS-6C">6c </A>
Feringa BL.
Huck PM.
Schoevaars AM.
Adv. Mater.
1996,
8:
681
<A NAME="RM03709SS-6D">6d </A>
Pijper D.
Jongejan MGM.
Meetsma A.
Feringa BL.
J.
Am. Chem. Soc.
2008,
130:
4541
<A NAME="RM03709SS-6E">6e </A>
Geertsema EM.
Hoen R.
Meetsma A.
Feringa BL.
Eur. J. Org. Chem.
2006,
16:
3596
<A NAME="RM03709SS-6F">6f </A>
Feringa BL.
Delden RA.
Wiel MKJ.
Pure Appl. Chem.
2003,
75:
563
<A NAME="RM03709SS-6G">6g </A>
Van Delden RA.
Ter Wiel MKJ.
Feringa BL.
Chem.
Commun.
2004,
200
<A NAME="RM03709SS-6H">6h </A>
Delden RA.
Mecca T.
Rosini C.
Feringa BL.
Chem. Europ. J.
2004,
10:
61
<A NAME="RM03709SS-6I">6i </A>
Zheng J.
Qiao W.
Wan X.
Gao JP.
Wang ZY.
Chem.
Mater.
2008,
20:
6163
<A NAME="RM03709SS-6J">6j </A>
Wang ZY.
Todd EK.
Meng XS.
Gao JP.
J.
Am. Chem. Soc.
2005,
127:
11552
<A NAME="RM03709SS-7A">7a </A>
Shinkai S.
Ikeda M.
Sugasaki A.
Takeuchi M.
Acc. Chem.
Res.
2001,
34:
494
<A NAME="RM03709SS-7B">7b </A>
Jiang X.
Lim Y.-K.
Zhang BJ.
Opsitnick EA.
Baik M.-H.
Lee D.
J. Am. Chem. Soc.
2008,
130:
16812
<A NAME="RM03709SS-7C">7c </A>
Li Y.
Wang T.
Liu M.
Soft Matter
2007,
3:
1312
<A NAME="RM03709SS-7D">7d </A>
Qiu Y.
Chen P.
Guo P.
Li Y.
Liu M.
Adv. Mater.
2008,
20:
2908
<A NAME="RM03709SS-7E">7e </A>
Canary JW.
Zahn S.
Chiu Y.-H.
Santos O.
Liu J.
Zhu L.
Enantiomer
2000,
5:
397
<A NAME="RM03709SS-8">8 </A>
Soloshonok VA.
Ueki H.
Moore JL.
Ellis TK.
J. Am. Chem. Soc.
2007,
129:
3512
<A NAME="RM03709SS-9">9 </A>
Kawamoto T.
Hammes BS.
Haggerty B.
Yap GPA.
Rheingold AL.
Borovik AS.
J.
Am. Chem. Soc.
1996,
118:
285
<A NAME="RM03709SS-10">10 </A>
Hamuro Y.
Geib SJ.
Hamilton AD.
Angew. Chem., Int. Ed. Engl.
1994,
33:
446
<A NAME="RM03709SS-11">11 </A>
Preston AJ.
Fraenkel G.
Chow A.
Gallucci JC.
Parquette JR.
J. Org. Chem.
2003,
68:
22
<A NAME="RM03709SS-12">12 </A>
Ramalingam V.
Domaradzki ME.
Jang S.
Muthyala RS.
Org. Lett.
2008,
10:
3315
<A NAME="RM03709SS-13A">13a </A>
Ueki H.
Ellis TK.
Martin CH.
Soloshonok VA.
Eur. J. Org. Chem.
2003,
1954
<A NAME="RM03709SS-13B">13b </A>
Ueki H.
Ellis TK.
Martin CH.
Bolene SB.
Boettiger TU.
Soloshonok VA.
J.
Org. Chem.
2003,
68:
7104
<A NAME="RM03709SS-13C">13c </A>
Soloshonok VA.
Cai C.
Hruby VJ.
Angew. Chem. In. Ed.
2000,
39:
2172
<A NAME="RM03709SS-13D">13d </A>
Soloshonok VA.
Cai C.
Yamada T.
Ueki H.
Ohfune Y.
Hruby VJ.
J. Am. Chem. Soc.
2005,
127:
15296
<A NAME="RM03709SS-13E">13e </A>
Soloshonok VA.
Ueki H.
J. Am. Chem.
Soc.
2007,
129:
2426
<A NAME="RM03709SS-13F">13f </A>
Soloshonok VA.
Cai C.
Hruby VJ.
Tetrahedron Lett.
2000,
41:
135
<A NAME="RM03709SS-13G">13g </A>
Yamada T.
Okada T.
Sakaguchi K.
Ohfune Y.
Ueki H.
Soloshonok VA.
Org. Lett.
2006,
8:
5625
<A NAME="RM03709SS-14A">14a </A>
Soloshonok VA.
Belokon YN.
Kuzmina NA.
Maleev VI.
Svistunova NY.
Solodenko VA.
Kukhar VP.
J. Chem. Soc., Perkin Trans. 1
1992,
1525
<A NAME="RM03709SS-14B">14b </A>
Soloshonok VA.
Cai C.
Hruby VJ.
Tetrahedron: Asymmetry
1999,
10:
4265
<A NAME="RM03709SS-14C">14c </A>
Soloshonok VA.
Avilov DV.
Kukhar VP.
Meervelt LV.
Mischenko N.
Tetrahedron Lett.
1997,
38:
4903
<A NAME="RM03709SS-14D">14d </A>
Soloshonok VA.
Avilov DV.
Kukhar VP.
Tetrahedron: Asymmetry
1996,
7:
1547
<A NAME="RM03709SS-14E">14e </A>
Soloshonok VA.
Avilov DV.
Kukhar VP.
Tararov VI.
Saveleva TF.
Churkina TD.
Ikonnikov NS.
Kochetkov KA.
Orlova SA.
Pysarevsky AP.
Struchkov YT.
Raevsky NI.
Belokon YN.
Tetrahedron: Asymmetry
1995,
6:
1741
<A NAME="RM03709SS-14F">14f </A>
Soloshonok VA.
Cai C.
Hruby VJ.
Org. Lett.
2000,
2:
747
<A NAME="RM03709SS-15A">15a </A>
Soloshonok VA.
Ueki H.
Ellis TK.
Tetrahedron Lett.
2005,
46:
941
<A NAME="RM03709SS-15B">15b </A>
Soloshonok VA.
Ueki H.
Ellis TK.
Yamada T.
Ohfune Y.
Tetrahedron Lett.
2005,
46:
1107
<A NAME="RM03709SS-15C">15c </A>
Soloshonok VA.
Ellis TK.
Synlett
2006,
533
<A NAME="RM03709SS-15D">15d </A>
Soloshonok VA.
Ueki H.
Ellis TK.
Chim. Oggi/Chem. Today
2008,
26:
51
<A NAME="RM03709SS-15E">15e </A>
Yamada T.
Sakaguchi K.
Shinada T.
Ohfune Y.
Soloshonok VA.
Tetrahedron: Asymmetry
2008,
19:
2789
<A NAME="RM03709SS-15F">15f </A>
Soloshonok VA.
Ueki H.
Ellis TK.
Synlett
2009,
704
<A NAME="RM03709SS-16">16 </A>
Ellis TK.
Ueki H.
Yamada T.
Ohfune Y.
Soloshonok VA.
J.
Org. Chem.
2006,
71:
8572
<A NAME="RM03709SS-17">17 </A>
Moore JL.
Taylor SM.
Soloshonok VA.
ARKIVOC
2005,
(vi):
287
<A NAME="RM03709SS-18">18 </A>
We could not find in the literature
the corresponding priority rules which exactly state that the coordinated
element has higher priority over the noncoordinated equivalent.