Subscribe to RSS
DOI: 10.1055/s-0029-1217092
[5+3] Cycloaddition of 3-Oxidopyrylium: A Novel Route to Functionalized Cyclooctanoids from Furans
Publication History
Publication Date:
03 November 2009 (online)
Abstract
We report a facile and efficient synthesis of highly functionalized cyclooctanoid derivatives by employing a dimerization reaction of 3-oxidopyrylium ylides. Different substituents are introduced on the dimer and the stereochemical outcome of the resultant cyclooctanoids is unambiguously established by single-crystal X-ray analysis.
Key words
cyclooctanoids - 3-oxidopyrylium ylides - [5+3] cycloadditions - stereoselectivity - density functional calculations
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Oishi T.Ohtsuks Y. In Studies in Natural Products Synthesis Vol. 3: . Elsevier; Amsterdam: 1989. p.73 -
1b
Rigby JH. In Studies in Natural Products Synthesis Vol. 12: . Elsevier; Amsterdam: 1993. p.233 - 2
Illuminati G.Mandoline L. Acc. Chem. Res. 1981, 14: 95 - 3
Molander GA. Acc. Chem. Res. 1998, 31: 603 - For reviews on oxidopyrylium cycloadditions, see:
-
4a
Singh V.Krishna UM. .Trivedi GK. Tetrahedron 2008, 64: 3405 -
4b
Sammes PG. Gazz. Chim. Ital. 1986, 51: 1573 -
4c
Wender PA.Love JA. In Advances in Cycloaddition Vol. 5:Harmata M. JAI Press; Stamford CT: 1999. p.1 -
4d
Mascarenas JL. In Advances in Cycloaddition Vol. 6:Harmata M. JAI Press; Stamford CT: 1999. p.1 - 5
Krishna UM.Deodhar KD.Trivedi GK.Mobin SM. J. Org. Chem. 2004, 69: 967 -
6a
Hendrickson JB.Farina JS. J. Org. Chem. 1980, 45: 3361 -
6b
Sammes PG.Street LJ. J. Chem. Soc., Perkin Trans. 1 1983, 1261 -
6c
Lee H.-Y.Kim HY.Kim BG.Kee JM. Synthesis 2007, 2360 - For other methods utilizing 3-oxidopyrylium in cyclooctanoid synthesis, see:
-
7a
Magnus P.Booth J.Diorazio L.Donohoe T.Lynch V.Magnus N.Mendoza J.Pye P.Tarrant J. Tetrahedron 1996, 52: 14103 -
7b
Delgado A.Castedo L.Mascarenas JL. Org. Lett. 2002, 4: 3091 -
7c
Radhakrishnan KV.Syam Krishnan K.Bhadbhade MM.Bhosekar GV. Tetrahedron Lett. 2005, 46: 4785 -
8a
Mehta G.Singh V. Chem. Rev. 1999, 99: 881 -
8b
Petasis NA.Patane MA. Tetrahedron 1992, 48: 5757 -
8c
Rodriguez J.Michaut A. Angew. Chem. Int. Ed. 2006, 45: 5740 -
8d
Deiters A.Martin SF. Chem. Rev. 2004, 104: 2199 -
8e
McReynolds MD.Dougherty JM.Hanson PR. Chem. Rev. 2004, 104: 2239 -
9a
Wender PA.Ihle NC. J. Am. Chem. Soc. 1986, 108: 4678 -
9b
Wender PA.Snapper ML. Tetrahedron Lett. 1987, 28: 2221 -
9c
Wender PA.Ihle NC. Tetrahedron Lett. 1987, 28: 2451 -
9d
Wender PA.Ihle NC.Correia CRD. J. Am. Chem. Soc. 1988, 110: 5904 -
9e
Wender PA.Tebbe MJ. Synthesis 1991, 1089 -
9f
Wender PA.Nuss JM.Smith DB.Suarez-Sobrino A.Vagberg J.Decosta D.Bordner J. J. Org. Chem. 1997, 62: 4908 ; and references cited therein -
10a
Sieburth SM.McGee KF.Al-Tel TH. J. Am. Chem. Soc. 1998, 120: 587 -
10b
Sieburth SM.Cunard NT. Tetrahedron 1996, 52: 6251 -
11a
Molander GA.Etter JB.Harring LS.Thorel P.-J. J. Am. Chem. Soc. 1991, 113: 8036 -
11b
Molander GA.Brown GA.deGracia IS. J. Org. Chem. 2002, 67: 3459 -
12a
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 -
12b
Fu GC.Grubbs RH. J. Am. Chem. Soc. 1992, 114: 5426 -
12c
Fu GC.Grubbs RH. J. Am. Chem. Soc. 1992, 114: 7324 -
12d
Fu GC.Nguyen ST.Grubbs RH. J. Am. Chem. Soc. 1993, 115: 9856 -
12e
Grubbs RH.Miller SJ.Fu GC. Acc. Chem. Res. 1995, 28: 446 -
13a
Schmalz H.-G. Angew. Chem., Int. Ed. Engl. 1995, 34: 1833 -
13b
Mar tin SF.Chen H.-J.Courtney AK.Liao Y.Patzel M.Ramser MN.Wagman AS. Tetrahedron 1996, 52: 7251 -
13c
Schneider MF.Junga H.Blechert S. Tetrahedron 1995, 51: 13003 -
13d
Furstner A.Muller T. Synlett 1997, 1010 -
14a
Achamatowicz O.Bukowski P.Szechner B.Swiezchowska Z.Zamojski A. Tetrahedron 1971, 27: 1973 -
14b
Georgiadis MP.Couladouros EA. J. Org. Chem. 1986, 51: 2725 - For recent reports from our group, see:
-
14c
Krishna UM.Srikanth GSC.Trivedi GK.Deodhar KD. Synlett 2003, 2383 -
14d
Krishna UM.Trivedi GK. Tetrahedron Lett. 2004, 45: 257 -
14e
Krishna UM.Deodhar KD.Trivedi GK. Tetrahedron 2004, 60: 4829 -
14f
Krishna UM.Srikanth GSC.Trivedi GK. Tetrahedron Lett. 2003, 44: 8227 -
16a
Khurana JM.Sharma P. Bull. Chem. Soc. Jpn. 2004, 77: 549 -
16b
Ganem B.Osby JO. Chem. Rev. 1986, 86: 763 - 17
Sabesan S.Neira S. J. Org. Chem. 1991, 56: 5468 - 18
Michaut A.Rodriguez J. Angew. Chem. Int. Ed. 2006, 45: 5740 - 19
Hosokawa T.Murahashi S.-I. Acc. Chem. Res. 1990, 23: 49 - The barriers for intramolecular aldol reactions (catalyzed as well as uncatalyzed processes) are generally found in the range of 5 to 30 kcal/mol. See:
-
20a
Bouillon J.-P.Portella C.Bouquant J.Humbel S. J. Org. Chem. 2000, 65: 5823 -
20b
Bahmanyar S.Houk KN. J. Am. Chem. Soc. 2001, 123: 12911 -
20c
Clemente FR.Houk KN. J. Am. Chem. Soc. 2005, 127: 11294 -
20d
The computed trends are found to be the same when solvent single-point energies as well as the free energies in the gas phase are compared.
- Various reports are available on the successful aldol approach for the system that lacks the oxo bridge. See:
-
22a
Yamada K.Iwadare H.Mukaiyama T. Chem. Pharm. Bull. 1997, 45: 1898 -
22b
Mukaiyama T.Shiina I.Kimura K.Akiyama Y.Iwadare H. Chem. Lett. 1995, 229 - 23 For an exhaustive review on oxa-bridge
openings, see:
Chiu P.Lautens M. Top. Curr. Chem. 1997, 190: 1 - 24
Frisch MJ.Trucks GW.Schlegel HB.Scuseria GE.Robb MA.Cheeseman JR.Montgomery JA.Vreven T.Kudin KN.Burant JC.Millam JM.Iyengar SS.Tomasi J.Barone V.Mennucci B.Cossi M.Scalmani G.Rega N.Petersson GA.Nakatsuji H.Hada M.Ehara M.Toyota K.Fukuda R.Hasegawa J.Ishida M.Nakajima T.Honda Y.Kitao O.Nakai H.Klene M.Li X.Knox JE.Hratchian HP.Cross JB.Bakken V.Adamo C.Jaramillo J.Gomperts R.Stratmann RE.Yazyev O.Austin AJ.Cammi R.Pomelli C.Ochterski JW.Ayala PY.Morokuma K.Voth GA.Salvador P.Dannenberg JJ.Zakrzewski VG.Dapprich S.Daniels AD.Strain MC.Farkas O.Malick DK.Rabuck AD.Raghavachari K.Foresman JB.Ortiz JV.Cui Q.Baboul AG.Clifford S.Cioslowski J.Stefanov BB.Liu G.Liashenko A.Piskorz P.Komaromi I.Martin RL.Fox DJ.Keith T.Al-Laham MA.Peng CY.Nanayakkara A.Challacombe M.Gill PMW.Johnson B.Chen W.Wong MW.Gonzalez C.Pople JA. Gaussian 03, Revision C.02 Gaussian Inc.; Wallingford (CT): 2004. -
25a
Cossi M.Barone V.Cammi R.Tomasi J. Chem. Phys. Lett. 1996, 255: 327 -
25b
Cances E.Mennucci B.Tomasi J. J. Chem. Phys. 1997, 107: 3032 -
26a
Gonzalez C.Schlegel HB. J. Chem. Phys. 1989, 90: 2154 -
26b
Gonzalez C.Schlegel HB. J. Phys. Chem. 1990, 94: 5523
References
CCDC 232578 (8),
232579 (11), and 735916 (17)
contain the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
X-ray
crystallographic data for 8: CCDC 232578,
empirical formula C12H16O5, formula
weight 240.25, T = 293(2)
K, λ = 0.70930 Å, crystal
system monoclinic, space group P21/n, unit cell dimensions a = 7.4888(5) Å, α = 90.000˚, b = 15.2345(11) Å, β = 98.888(5)˚, c = 10.0221(5) Å, γ = 90.000˚, V = 1129.67(12) ų, Z = 4, D
calcd = 1.413
Mg/m³, absorption coefficient 0.110
mm-¹, F(000) = 512,
crystal size 0.35 × 0.30 × 0.20 mm, data collection θ range
2.45-25.01˚, index ranges 0 ≤ h ≤ 8, 0 ≤ k ≤ 18, -11 ≤ l ≤ 11, reflections collected
1875, unique 1875 [R(int) = 0.0000], refinement
method full-matrix least-squares on F2,
data/restraints/parameters 1875/0/220,
goodness-of-fit on F
² 1.134,
final R indices [I > 2σ(I)] R1 = 0.0539, wR2 = 0.1481, R indices (all data) R1 = 0.0571, wR2 = 0.1524,
largest diff. peak and hole 0.249 and -0.394 e˙Å-³.
X-ray
crystallographic data for 11: CCDC 232579,
empirical formula C14H18O6, formula
weight 282.28, T = 293(2)
K, λ = 0.70930 Å, crystal
system: monoclinic, space group P21/n, unit cell dimensions a = 10.5020(13) Å, b = 10.6560(10) Å, c = 12.9850(18) Å, β = 109.664(10)˚, V = 1368.4(3) ų, Z = 4, D
calcd = 1.370
Mg/m³, absorption coefficient 0.107
mm-¹, F(000) = 600,
crystal size 0.4 × 0.35 × 0.35 mm, data collection θ range
2.17-24.90˚, index ranges 0 ≤ h ≤ 12, 0 ≤ k ≤ 12, -15 ≤ l ≤ 14, reflections collected
1840, unique 1840 [R(int) = 0.0000],
refinement method full-matrix least-squares on F2,
data/restraints/parameters 1840/0/253,
goodness-of-fit on F
² 1.023,
final R indices [I > 2σ(I)] R1 = 0.0711, wR2 = 0.1712, R indices (all data) R1 = 0.0875, wR2 = 0.1823,
largest diff. peak and hole 0.339 and -0.283 e˙Å-³.
X-ray
crystallographic data for 17: CCDC 735916,
empirical formula C25H28O4, formula
weight 392.47, T = 293(2)
K, λ = 0.70930 Å, crystal
system monoclinic, space group P21/c, unit cell dimensions a = 7.550(5) Å, b = 24.686(3) Å, c = 11.4950(10) Å, β = 90.116(7)˚, V = 2087.1(3) ų, Z = 4, D
calcd = 1.249
Mg/m³, absorption coefficient 0.083
mm-¹, F(000) = 840,
crystal size 0.4 × 0.4 × 0.35 mm, data collection θ range
1.65-24.92˚, index ranges 0 ≤ h ≤ 8, 0 ≤ k ≤ 29, -13 ≤ l ≤ 13, reflections collected
3074, unique 3074 [R(int) = 0.0000],
refinement method full-matrix least-squares on F2,
data/restraints/parameters 3074/0/375, goodness-of-fit
on F
² 1.065, final R indices [I > 2σ(I)] R1 = 0.0423, wR2 = 0.0983, R indices (all data) R1 = 0.0620, wR2 = 0.1107,
largest diff. peak and hole 0.183 and -0.162 e˙Å-³.
This prediction is in accordance with experimental attempts for the ring closure in which starting material is recovered instead of the desired cyclic product.