References
1a
Oishi T.
Ohtsuks Y. In Studies in Natural Products Synthesis
Vol.
3:
.
Elsevier;
Amsterdam:
1989.
p.73
1b
Rigby JH. In Studies in Natural Products
Synthesis
Vol. 12:
.
Elsevier;
Amsterdam:
1993.
p.233
2
Illuminati G.
Mandoline L.
Acc. Chem. Res.
1981,
14:
95
3
Molander GA.
Acc.
Chem. Res.
1998,
31:
603
For reviews on oxidopyrylium cycloadditions,
see:
4a
Singh V.
Krishna UM.
.
Trivedi GK.
Tetrahedron
2008,
64:
3405
4b
Sammes PG.
Gazz. Chim. Ital.
1986,
51:
1573
4c
Wender PA.
Love JA. In Advances in Cycloaddition
Vol.
5:
Harmata M.
JAI Press;
Stamford
CT:
1999.
p.1
4d
Mascarenas JL. In Advances in Cycloaddition
Vol.
6:
Harmata M.
JAI Press;
Stamford
CT:
1999.
p.1
5
Krishna UM.
Deodhar KD.
Trivedi GK.
Mobin SM.
J.
Org. Chem.
2004,
69:
967
6a
Hendrickson JB.
Farina JS.
J. Org. Chem.
1980,
45:
3361
6b
Sammes PG.
Street LJ.
J.
Chem. Soc., Perkin Trans. 1
1983,
1261
6c
Lee H.-Y.
Kim HY.
Kim BG.
Kee JM.
Synthesis
2007,
2360
For other methods utilizing 3-oxidopyrylium
in cyclooctanoid synthesis, see:
7a
Magnus P.
Booth J.
Diorazio L.
Donohoe T.
Lynch V.
Magnus N.
Mendoza J.
Pye P.
Tarrant J.
Tetrahedron
1996,
52:
14103
7b
Delgado A.
Castedo L.
Mascarenas JL.
Org. Lett.
2002,
4:
3091
7c
Radhakrishnan KV.
Syam Krishnan K.
Bhadbhade MM.
Bhosekar GV.
Tetrahedron Lett.
2005,
46:
4785
8a
Mehta G.
Singh V.
Chem.
Rev.
1999,
99:
881
8b
Petasis NA.
Patane MA.
Tetrahedron
1992,
48:
5757
8c
Rodriguez J.
Michaut A.
Angew. Chem. Int. Ed.
2006,
45:
5740
8d
Deiters A.
Martin SF.
Chem. Rev.
2004,
104:
2199
8e
McReynolds MD.
Dougherty JM.
Hanson PR.
Chem. Rev.
2004,
104:
2239
9a
Wender PA.
Ihle NC.
J.
Am. Chem. Soc.
1986,
108:
4678
9b
Wender PA.
Snapper ML.
Tetrahedron
Lett.
1987,
28:
2221
9c
Wender PA.
Ihle NC.
Tetrahedron Lett.
1987,
28:
2451
9d
Wender PA.
Ihle NC.
Correia CRD.
J. Am. Chem. Soc.
1988,
110:
5904
9e
Wender PA.
Tebbe MJ.
Synthesis
1991,
1089
9f
Wender PA.
Nuss JM.
Smith DB.
Suarez-Sobrino A.
Vagberg J.
Decosta D.
Bordner J.
J. Org. Chem.
1997,
62:
4908 ; and references cited therein
10a
Sieburth SM.
McGee KF.
Al-Tel TH.
J.
Am. Chem. Soc.
1998,
120:
587
10b
Sieburth SM.
Cunard NT.
Tetrahedron
1996,
52:
6251
11a
Molander GA.
Etter JB.
Harring LS.
Thorel P.-J.
J. Am. Chem. Soc.
1991,
113:
8036
11b
Molander GA.
Brown GA.
deGracia IS.
J. Org. Chem.
2002,
67:
3459
12a
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
12b
Fu GC.
Grubbs RH.
J. Am. Chem. Soc.
1992,
114:
5426
12c
Fu GC.
Grubbs RH.
J. Am. Chem. Soc.
1992,
114:
7324
12d
Fu GC.
Nguyen ST.
Grubbs RH.
J. Am. Chem. Soc.
1993,
115:
9856
12e
Grubbs RH.
Miller SJ.
Fu GC.
Acc. Chem. Res.
1995,
28:
446
13a
Schmalz H.-G.
Angew. Chem., Int. Ed. Engl.
1995,
34:
1833
13b
Mar tin SF.
Chen H.-J.
Courtney AK.
Liao Y.
Patzel M.
Ramser MN.
Wagman AS.
Tetrahedron
1996,
52:
7251
13c
Schneider MF.
Junga H.
Blechert S.
Tetrahedron
1995,
51:
13003
13d
Furstner A.
Muller T.
Synlett
1997,
1010
14a
Achamatowicz O.
Bukowski P.
Szechner B.
Swiezchowska Z.
Zamojski A.
Tetrahedron
1971,
27:
1973
14b
Georgiadis MP.
Couladouros EA.
J.
Org. Chem.
1986,
51:
2725
For recent reports from our group, see:
14c
Krishna UM.
Srikanth GSC.
Trivedi GK.
Deodhar KD.
Synlett
2003,
2383
14d
Krishna UM.
Trivedi GK.
Tetrahedron
Lett.
2004,
45:
257
14e
Krishna UM.
Deodhar KD.
Trivedi GK.
Tetrahedron
2004,
60:
4829
14f
Krishna UM.
Srikanth GSC.
Trivedi GK.
Tetrahedron Lett.
2003,
44:
8227
15 CCDC 232578 (8),
232579 (11), and 735916 (17)
contain the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
X-ray
crystallographic data for 8: CCDC 232578,
empirical formula C12H16O5, formula
weight 240.25, T = 293(2)
K, λ = 0.70930 Å, crystal
system monoclinic, space group P21/n, unit cell dimensions a = 7.4888(5) Å, α = 90.000˚, b = 15.2345(11) Å, β = 98.888(5)˚, c = 10.0221(5) Å, γ = 90.000˚, V = 1129.67(12) ų, Z = 4, D
calcd = 1.413
Mg/m³, absorption coefficient 0.110
mm-¹, F(000) = 512,
crystal size 0.35 × 0.30 × 0.20 mm, data collection θ range
2.45-25.01˚, index ranges 0 ≤ h ≤ 8, 0 ≤ k ≤ 18, -11 ≤ l ≤ 11, reflections collected
1875, unique 1875 [R(int) = 0.0000], refinement
method full-matrix least-squares on F2,
data/restraints/parameters 1875/0/220,
goodness-of-fit on F
² 1.134,
final R indices [I > 2σ(I)] R1 = 0.0539, wR2 = 0.1481, R indices (all data) R1 = 0.0571, wR2 = 0.1524,
largest diff. peak and hole 0.249 and -0.394 e˙Å-³.
X-ray
crystallographic data for 11: CCDC 232579,
empirical formula C14H18O6, formula
weight 282.28, T = 293(2)
K, λ = 0.70930 Å, crystal
system: monoclinic, space group P21/n, unit cell dimensions a = 10.5020(13) Å, b = 10.6560(10) Å, c = 12.9850(18) Å, β = 109.664(10)˚, V = 1368.4(3) ų, Z = 4, D
calcd = 1.370
Mg/m³, absorption coefficient 0.107
mm-¹, F(000) = 600,
crystal size 0.4 × 0.35 × 0.35 mm, data collection θ range
2.17-24.90˚, index ranges 0 ≤ h ≤ 12, 0 ≤ k ≤ 12, -15 ≤ l ≤ 14, reflections collected
1840, unique 1840 [R(int) = 0.0000],
refinement method full-matrix least-squares on F2,
data/restraints/parameters 1840/0/253,
goodness-of-fit on F
² 1.023,
final R indices [I > 2σ(I)] R1 = 0.0711, wR2 = 0.1712, R indices (all data) R1 = 0.0875, wR2 = 0.1823,
largest diff. peak and hole 0.339 and -0.283 e˙Å-³.
X-ray
crystallographic data for 17: CCDC 735916,
empirical formula C25H28O4, formula
weight 392.47, T = 293(2)
K, λ = 0.70930 Å, crystal
system monoclinic, space group P21/c, unit cell dimensions a = 7.550(5) Å, b = 24.686(3) Å, c = 11.4950(10) Å, β = 90.116(7)˚, V = 2087.1(3) ų, Z = 4, D
calcd = 1.249
Mg/m³, absorption coefficient 0.083
mm-¹, F(000) = 840,
crystal size 0.4 × 0.4 × 0.35 mm, data collection θ range
1.65-24.92˚, index ranges 0 ≤ h ≤ 8, 0 ≤ k ≤ 29, -13 ≤ l ≤ 13, reflections collected
3074, unique 3074 [R(int) = 0.0000],
refinement method full-matrix least-squares on F2,
data/restraints/parameters 3074/0/375, goodness-of-fit
on F
² 1.065, final R indices [I > 2σ(I)] R1 = 0.0423, wR2 = 0.0983, R indices (all data) R1 = 0.0620, wR2 = 0.1107,
largest diff. peak and hole 0.183 and -0.162 e˙Å-³.
16a
Khurana JM.
Sharma P.
Bull.
Chem. Soc. Jpn.
2004,
77:
549
16b
Ganem B.
Osby JO.
Chem. Rev.
1986,
86:
763
17
Sabesan S.
Neira S.
J. Org. Chem.
1991,
56:
5468
18
Michaut A.
Rodriguez J.
Angew. Chem. Int. Ed.
2006,
45:
5740
19
Hosokawa T.
Murahashi S.-I.
Acc. Chem. Res.
1990,
23:
49
The barriers for intramolecular
aldol reactions (catalyzed as well as uncatalyzed processes) are
generally found in the range of 5 to 30 kcal/mol. See:
20a
Bouillon J.-P.
Portella C.
Bouquant J.
Humbel S.
J. Org. Chem.
2000,
65:
5823
20b
Bahmanyar S.
Houk KN.
J. Am. Chem. Soc.
2001,
123:
12911
20c
Clemente FR.
Houk KN.
J.
Am. Chem. Soc.
2005,
127:
11294
20d The computed trends
are found to be the same when solvent single-point energies as well
as the free energies in the gas phase are compared.
21 This prediction is in accordance with
experimental attempts for the ring closure in which starting material
is recovered instead of the desired cyclic product.
Various reports are available on
the successful aldol approach for the system that lacks the oxo
bridge. See:
22a
Yamada K.
Iwadare H.
Mukaiyama T.
Chem.
Pharm. Bull.
1997,
45:
1898
22b
Mukaiyama T.
Shiina I.
Kimura K.
Akiyama Y.
Iwadare H.
Chem.
Lett.
1995,
229
23 For an exhaustive review on oxa-bridge
openings, see: Chiu P.
Lautens M.
Top.
Curr. Chem.
1997,
190:
1
24
Frisch MJ.
Trucks GW.
Schlegel HB.
Scuseria GE.
Robb MA.
Cheeseman JR.
Montgomery JA.
Vreven T.
Kudin KN.
Burant JC.
Millam JM.
Iyengar SS.
Tomasi J.
Barone V.
Mennucci B.
Cossi M.
Scalmani G.
Rega N.
Petersson GA.
Nakatsuji H.
Hada M.
Ehara M.
Toyota K.
Fukuda R.
Hasegawa J.
Ishida M.
Nakajima T.
Honda Y.
Kitao O.
Nakai H.
Klene M.
Li X.
Knox JE.
Hratchian HP.
Cross JB.
Bakken V.
Adamo C.
Jaramillo J.
Gomperts R.
Stratmann RE.
Yazyev O.
Austin AJ.
Cammi R.
Pomelli C.
Ochterski JW.
Ayala PY.
Morokuma K.
Voth GA.
Salvador P.
Dannenberg JJ.
Zakrzewski VG.
Dapprich S.
Daniels AD.
Strain MC.
Farkas O.
Malick DK.
Rabuck AD.
Raghavachari K.
Foresman JB.
Ortiz JV.
Cui Q.
Baboul AG.
Clifford S.
Cioslowski J.
Stefanov BB.
Liu G.
Liashenko A.
Piskorz P.
Komaromi I.
Martin RL.
Fox DJ.
Keith T.
Al-Laham MA.
Peng CY.
Nanayakkara A.
Challacombe M.
Gill PMW.
Johnson B.
Chen W.
Wong MW.
Gonzalez C.
Pople JA.
Gaussian 03, Revision C.02
Gaussian
Inc.;
Wallingford (CT):
2004.
25a
Cossi M.
Barone V.
Cammi R.
Tomasi J.
Chem. Phys.
Lett.
1996,
255:
327
25b
Cances E.
Mennucci B.
Tomasi J.
J.
Chem. Phys.
1997,
107:
3032
26a
Gonzalez C.
Schlegel HB.
J.
Chem. Phys.
1989,
90:
2154
26b
Gonzalez C.
Schlegel HB.
J. Phys. Chem.
1990,
94:
5523