Synthesis 2010(2): 320-328  
DOI: 10.1055/s-0029-1217092
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

[5+3] Cycloaddition of 3-Oxidopyrylium: A Novel Route to Functionalized Cyclooctanoids from Furans

Urlam Murali Krishna*a,b, Mahendra P. Patila, Raghavan B. Sunoj*a, Girish K. Trivedia
a Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
b Department of Surgery and Biomedical Engineering, Emory University, School of Medicine, Atlanta, GA 30322, USA
Fax: +1(404)7273660; e-Mail: murlam@emory.edu; e-Mail: sunoj@chem.iitb.ac.in;
Weitere Informationen

Publikationsverlauf

Received 11 August 2009
Publikationsdatum:
03. November 2009 (online)

Abstract

We report a facile and efficient synthesis of highly functionalized cyclooctanoid derivatives by employing a dimerization reaction of 3-oxidopyrylium ylides. Different substituents are introduced on the dimer and the stereochemical outcome of the resultant cyclooctanoids is unambiguously established by single-crystal X-ray analysis.

    References

  • 1a Oishi T. Ohtsuks Y. In Studies in Natural Products Synthesis   Vol. 3:  . Elsevier; Amsterdam: 1989.  p.73 
  • 1b Rigby JH. In Studies in Natural Products Synthesis   Vol. 12:  . Elsevier; Amsterdam: 1993.  p.233 
  • 2 Illuminati G. Mandoline L. Acc. Chem. Res.  1981,  14:  95 
  • 3 Molander GA. Acc. Chem. Res.  1998,  31:  603 
  • For reviews on oxidopyrylium cycloadditions, see:
  • 4a Singh V. Krishna UM. . Trivedi GK. Tetrahedron  2008,  64:  3405 
  • 4b Sammes PG. Gazz. Chim. Ital.  1986,  51:  1573 
  • 4c Wender PA. Love JA. In Advances in Cycloaddition   Vol. 5:  Harmata M. JAI Press; Stamford CT: 1999.  p.1 
  • 4d Mascarenas JL. In Advances in Cycloaddition   Vol. 6:  Harmata M. JAI Press; Stamford CT: 1999.  p.1 
  • 5 Krishna UM. Deodhar KD. Trivedi GK. Mobin SM. J. Org. Chem.  2004,  69:  967 
  • 6a Hendrickson JB. Farina JS. J. Org. Chem.  1980,  45:  3361 
  • 6b Sammes PG. Street LJ. J. Chem. Soc., Perkin Trans. 1  1983,  1261 
  • 6c Lee H.-Y. Kim HY. Kim BG. Kee JM. Synthesis  2007,  2360 
  • For other methods utilizing 3-oxidopyrylium in cyclooctanoid synthesis, see:
  • 7a Magnus P. Booth J. Diorazio L. Donohoe T. Lynch V. Magnus N. Mendoza J. Pye P. Tarrant J. Tetrahedron  1996,  52:  14103 
  • 7b Delgado A. Castedo L. Mascarenas JL. Org. Lett.  2002,  4:  3091 
  • 7c Radhakrishnan KV. Syam Krishnan K. Bhadbhade MM. Bhosekar GV. Tetrahedron Lett.  2005,  46:  4785 
  • 8a Mehta G. Singh V. Chem. Rev.  1999,  99:  881 
  • 8b Petasis NA. Patane MA. Tetrahedron  1992,  48:  5757 
  • 8c Rodriguez J. Michaut A. Angew. Chem. Int. Ed.  2006,  45:  5740 
  • 8d Deiters A. Martin SF. Chem. Rev.  2004,  104:  2199 
  • 8e McReynolds MD. Dougherty JM. Hanson PR. Chem. Rev.  2004,  104:  2239 
  • 9a Wender PA. Ihle NC. J. Am. Chem. Soc.  1986,  108:  4678 
  • 9b Wender PA. Snapper ML. Tetrahedron Lett.  1987,  28:  2221 
  • 9c Wender PA. Ihle NC. Tetrahedron Lett.  1987,  28:  2451 
  • 9d Wender PA. Ihle NC. Correia CRD. J. Am. Chem. Soc.  1988,  110:  5904 
  • 9e Wender PA. Tebbe MJ. Synthesis  1991,  1089 
  • 9f Wender PA. Nuss JM. Smith DB. Suarez-Sobrino A. Vagberg J. Decosta D. Bordner J. J. Org. Chem.  1997,  62:  4908 ; and references cited therein
  • 10a Sieburth SM. McGee KF. Al-Tel TH. J. Am. Chem. Soc.  1998,  120:  587 
  • 10b Sieburth SM. Cunard NT. Tetrahedron  1996,  52:  6251 
  • 11a Molander GA. Etter JB. Harring LS. Thorel P.-J. J. Am. Chem. Soc.  1991,  113:  8036 
  • 11b Molander GA. Brown GA. deGracia IS. J. Org. Chem.  2002,  67:  3459 
  • 12a Grubbs RH. Chang S. Tetrahedron  1998,  54:  4413 
  • 12b Fu GC. Grubbs RH. J. Am. Chem. Soc.  1992,  114:  5426 
  • 12c Fu GC. Grubbs RH. J. Am. Chem. Soc.  1992,  114:  7324 
  • 12d Fu GC. Nguyen ST. Grubbs RH. J. Am. Chem. Soc.  1993,  115:  9856 
  • 12e Grubbs RH. Miller SJ. Fu GC. Acc. Chem. Res.  1995,  28:  446 
  • 13a Schmalz H.-G. Angew. Chem., Int. Ed. Engl.  1995,  34:  1833 
  • 13b Mar tin SF. Chen H.-J. Courtney AK. Liao Y. Patzel M. Ramser MN. Wagman AS. Tetrahedron  1996,  52:  7251 
  • 13c Schneider MF. Junga H. Blechert S. Tetrahedron  1995,  51:  13003 
  • 13d Furstner A. Muller T. Synlett  1997,  1010 
  • 14a Achamatowicz O. Bukowski P. Szechner B. Swiezchowska Z. Zamojski A. Tetrahedron  1971,  27:  1973 
  • 14b Georgiadis MP. Couladouros EA. J. Org. Chem.  1986,  51:  2725 
  • For recent reports from our group, see:
  • 14c Krishna UM. Srikanth GSC. Trivedi GK. Deodhar KD. Synlett  2003,  2383 
  • 14d Krishna UM. Trivedi GK. Tetrahedron Lett.  2004,  45:  257 
  • 14e Krishna UM. Deodhar KD. Trivedi GK. Tetrahedron  2004,  60:  4829 
  • 14f Krishna UM. Srikanth GSC. Trivedi GK. Tetrahedron Lett.  2003,  44:  8227 
  • 16a Khurana JM. Sharma P. Bull. Chem. Soc. Jpn.  2004,  77:  549 
  • 16b Ganem B. Osby JO. Chem. Rev.  1986,  86:  763 
  • 17 Sabesan S. Neira S. J. Org. Chem.  1991,  56:  5468 
  • 18 Michaut A. Rodriguez J. Angew. Chem. Int. Ed.  2006,  45:  5740 
  • 19 Hosokawa T. Murahashi S.-I. Acc. Chem. Res.  1990,  23:  49 
  • The barriers for intramolecular aldol reactions (catalyzed as well as uncatalyzed processes) are generally found in the range of 5 to 30 kcal/mol. See:
  • 20a Bouillon J.-P. Portella C. Bouquant J. Humbel S. J. Org. Chem.  2000,  65:  5823 
  • 20b Bahmanyar S. Houk KN. J. Am. Chem. Soc.  2001,  123:  12911 
  • 20c Clemente FR. Houk KN. J. Am. Chem. Soc.  2005,  127:  11294 
  • 20d

    The computed trends are found to be the same when solvent single-point energies as well as the free energies in the gas phase are compared.

  • Various reports are available on the successful aldol approach for the system that lacks the oxo bridge. See:
  • 22a Yamada K. Iwadare H. Mukaiyama T. Chem. Pharm. Bull.  1997,  45:  1898 
  • 22b Mukaiyama T. Shiina I. Kimura K. Akiyama Y. Iwadare H. Chem. Lett.  1995,  229 
  • 23 For an exhaustive review on oxa-bridge openings, see: Chiu P. Lautens M. Top. Curr. Chem.  1997,  190:  1 
  • 24 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Montgomery JA. Vreven T. Kudin KN. Burant JC. Millam JM. Iyengar SS. Tomasi J. Barone V. Mennucci B. Cossi M. Scalmani G. Rega N. Petersson GA. Nakatsuji H. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Klene M. Li X. Knox JE. Hratchian HP. Cross JB. Bakken V. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Ayala PY. Morokuma K. Voth GA. Salvador P. Dannenberg JJ. Zakrzewski VG. Dapprich S. Daniels AD. Strain MC. Farkas O. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Ortiz JV. Cui Q. Baboul AG. Clifford S. Cioslowski J. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PMW. Johnson B. Chen W. Wong MW. Gonzalez C. Pople JA. Gaussian 03, Revision C.02   Gaussian Inc.; Wallingford (CT): 2004. 
  • 25a Cossi M. Barone V. Cammi R. Tomasi J. Chem. Phys. Lett.  1996,  255:  327 
  • 25b Cances E. Mennucci B. Tomasi J. J. Chem. Phys.  1997,  107:  3032 
  • 26a Gonzalez C. Schlegel HB. J. Chem. Phys.  1989,  90:  2154 
  • 26b Gonzalez C. Schlegel HB. J. Phys. Chem.  1990,  94:  5523 
15

CCDC 232578 (8), 232579 (11), and 735916 (17) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
X-ray crystallographic data for 8: CCDC 232578, empirical formula C12H16O5, formula weight 240.25, T = 293(2) K, λ = 0.70930 Å, crystal system monoclinic, space group P21/n, unit cell dimensions a = 7.4888(5) Å, α = 90.000˚, b = 15.2345(11) Å, β = 98.888(5)˚, c = 10.0221(5) Å, γ = 90.000˚, V = 1129.67(12) ų, Z = 4, D calcd = 1.413 Mg/m³, absorption coefficient 0.110 mm, F(000) = 512, crystal size 0.35 × 0.30 × 0.20 mm, data collection θ range 2.45-25.01˚, index ranges 0 ≤ h ≤ 8, 0 ≤ k ≤ 18, -11 ≤ l ≤ 11, reflections collected 1875, unique 1875 [R(int) = 0.0000], refinement method full-matrix least-squares on F2, data/restraints/parameters 1875/0/220, goodness-of-fit on F ² 1.134, final R indices [I > 2σ(I)] R1 = 0.0539, wR2 = 0.1481, R indices (all data) R1 = 0.0571, wR2 = 0.1524, largest diff. peak and hole 0.249 and -0.394 e˙Å.
X-ray crystallographic data for 11: CCDC 232579, empirical formula C14H18O6, formula weight 282.28, T = 293(2) K, λ = 0.70930 Å, crystal system: monoclinic, space group P21/n, unit cell dimensions a = 10.5020(13) Å, b = 10.6560(10) Å, c = 12.9850(18) Å, β = 109.664(10)˚, V = 1368.4(3) ų, Z = 4, D calcd = 1.370 Mg/m³, absorption coefficient 0.107 mm, F(000) = 600, crystal size 0.4 × 0.35 × 0.35 mm, data collection θ range 2.17-24.90˚, index ranges 0 ≤ h ≤ 12, 0 ≤ k ≤ 12, -15 ≤ l ≤ 14, reflections collected 1840, unique 1840 [R(int) = 0.0000], refinement method full-matrix least-squares on F2, data/restraints/parameters 1840/0/253, goodness-of-fit on F ² 1.023, final R indices [I > 2σ(I)] R1 = 0.0711, wR2 = 0.1712, R indices (all data) R1 = 0.0875, wR2 = 0.1823, largest diff. peak and hole 0.339 and -0.283 e˙Å.
X-ray crystallographic data for 17: CCDC 735916, empirical formula C25H28O4, formula weight 392.47, T = 293(2) K, λ = 0.70930 Å, crystal system monoclinic, space group P21/c, unit cell dimensions a = 7.550(5) Å, b = 24.686(3) Å, c = 11.4950(10) Å, β = 90.116(7)˚, V = 2087.1(3) ų, Z = 4, D calcd = 1.249 Mg/m³, absorption coefficient 0.083 mm, F(000) = 840, crystal size 0.4 × 0.4 × 0.35 mm, data collection θ range 1.65-24.92˚, index ranges 0 ≤ h ≤ 8, 0 ≤ k ≤ 29, -13 ≤ l ≤ 13, reflections collected 3074, unique 3074 [R(int) = 0.0000], refinement method full-matrix least-squares on F2, data/restraints/parameters 3074/0/375, goodness-of-fit on F ² 1.065, final R indices [I > 2σ(I)] R1 = 0.0423, wR2 = 0.0983, R indices (all data) R1 = 0.0620, wR2 = 0.1107, largest diff. peak and hole 0.183 and -0.162 e˙Å.

21

This prediction is in accordance with experimental attempts for the ring closure in which starting material is recovered instead of the desired cyclic product.