Synlett 2009(9): 1405-1408  
DOI: 10.1055/s-0029-1217159
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Carboannulation Reactions of Cyclohexenone Derivatives: Synthesis of Functionalized α-Tetralones

Mohamed Tabouazata,b, Ahmed El Louzia, Mohammed Ahmarb, Bernard Cazes*b
a LCPSOB, Université Mohammed V-Agdal, Av. Ibn Battouta, BP 1014, Rabat, Morroco
b CNRS, ICBMS-UMR 5246,, Université LYON 1, Bât. CPE-Lyon, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
Fax: +33(4)72431214; e-Mail: cazes@univ-lyon1.fr;
Further Information

Publication History

Received 10 December 2008
Publication Date:
13 May 2009 (online)

Abstract

The base-mediated cyclocondensation reactions of 3-(ethoxycarbonylmethylene)- and 3-(cyanomethylene)cyclohexen­ones with ethoxymethylenemalonate derivatives lead to two functionalized α-tetralones with selectivities which depend on the stoichiometric ratio of the reactants. α-Tetralones are selectively obtained when excess Michael acceptor is used.

    References and Notes

  • 1a Ishikawa T. Murota M. Watanabe T. Harayama T. Ishi H. Tetrahedron Lett.  1995,  36:  4269 
  • 1b Konno F. Ishikawa T. Kawahata M. Yamagushi K. J. Org. Chem.  2006,  71:  9818 
  • 2 Talapatra SK. Karmacharya B. De S C. Talapatra B. Phytochemistry  1988,  27:  3929 
  • 3 Wang Y.-F. Cao J.-X. Efferth T. Lai G.-F. Luo S.-D. Chem. Biodiversity  2006,  3:  646 
  • 4 Liu L. Li A.-L. Zhao MB. Tu P.-F. Chem. Biodiversity  2006,  4:  2932 
  • 5 Rukachaisirikul V. Sommart U. Phongpaichit S. Hutadilok-Towatana N. Rungjindamal N. Sakayaroj J. Chem. Pharm. Bull.  2007,  55:  1316 
  • 6 Gu W. Ge HM. Song YC. Ding H. Zhu HL. Zhao XA. Tan RX. J. Nat. Prod.  2007,  70:  114 
  • 7 Shih H. Deng L. Carrera CJ. Adachi S. Cottam HB. Carson DA. Bioorg. Med. Chem. Lett.  2000,  10:  487 
  • 8a Caro Y. Torrado M. Masaguer CF. Raviña E. Padin F. Brea J. Loza MI. Bioorg. Med. Chem. Lett.  2004,  14:  585 
  • 8b Caro Y. Masaguer CF. Raviña E. Tetrahedron: Asymmetry  2003,  34:  381 
  • 9a Ghatak A. Dorsey JM. Garner CM. Pinney KG. Tetrahedron Lett.  2003,  44:  4145 
  • 9b Charrier C. Bertrand D. Gesson J.-P. Roche J. Bioorg. Med. Chem. Lett.  2006,  16:  5339 
  • 9c Chavan SP. Rao TS. Govande CA. Zubaidha PK. Dhondge VD. Tetrahedron Lett.  1997,  38:  7633 
  • 9d Tatsuta K. Kojima N. Chino M. Kawazoe S. Nakata M. Tetrahedron Lett.  1993,  34:  4961 
  • 9e Torrado M. Masaguer C. Ravina E. Tetrahedron Lett.  2007,  48:  323 
  • 10 Chan TH. Guertin KR. Prasad CVC. Thomas AW. Strunz GM. Salonius A. Can. J. Chem.  1990,  68:  1170 
  • 11a Liu Z, Cheng Z, and Wang C. inventors; CN  1,156,139.  ; Appl. CN 96,116,829; Chem. Abstr. 2000, 132, 12422w
  • 11b Bueschken W. inventors; DE  3,639,921.  ; Chem. Abstr. 1988, 109, 151916y
  • 12a Johnson WS. Org. React.  1949,  2:  114 
  • 12b Schellhammer C.-W. In Houben-Weyl Methoden der Organischen Chemie   Vol. VII/2a:  Müller E. Thieme; Stuttgart: 1973.  p.143-144  
  • 13a Danishefsky S. Harayama T. Singh RK. J. Am. Chem. Soc.  1979,  101:  7008 
  • 13b Faragher R. Gilgchrist T. Southon IW. J. Chem. Soc., Perkin Trans. 1  1981,  2352 
  • 13c Liu HJ. Ngooi TK. Browne ENC. Can. J. Chem.  1988,  66:  3143 
  • 13d Takeuchi N. Ohki J. Tobinaga S. Chem. Pharm. Bull.  1988,  36:  481 
  • 14 Tarchompoo B. Thebtaranonth C. Thebtaranonth Y. Synthesis  1986,  785 
  • 15a Brunet JJ. Essiz M. Caubère P. Tetrahedron Lett.  1974,  15:  871 
  • 15b Essiz M. Guillaumet G. Brunet JJ. Caubère P. J. Org. Chem.  1980,  45:  240 
  • 16 Mori N. Ikeda S.-I. Sato Y. J. Am. Chem. Soc.  1999,  121:  2722 
  • 17 Liard A. Quiclet-Sire B. Saicic RN. Zard SZ. Tetrahedron Lett.  1997,  38:  1759 
  • 18a Cyrot E. Wiemann J. Tetrahedron Lett.  1971,  12:  53 
  • 18b Cyrot E. Ann. Chim. (Paris)  1971,  6:  413 ; Chem. Abstr. 1971, 77, 34182r
  • 19 Rissafi B. El Louzy A. Loupy A. Petit A. Soufiaoui M. Fkih-Tétouani S. Eur. J. Org. Chem.  2002,  2518 
  • For few reports on such carboannulation reactions giving access to condensed structures, see:
  • 20a Deady LW. Werden DM. J. Org. Chem.  1987,  52:  3930 
  • 20b Radl S. Kovarova L. Collect. Czech. Chem. Commun.  1992,  57:  212 
  • 21 Tamura Y. Yoshima Y. Suzuki M. Terashima M. Chem. Ind.  1970,  1410 
  • 22 Kazarian J. Geribaldi S. Ferrero L. Rouillard M. Azzaro M. J. Org. Chem.  1978,  43:  1817 
23

Typical Experimental Procedure (Table 1, entry 5) - Synthesis of Diethyl 5,6,7,8-Tetrahydro-7,7-dimethyl-4-hydroxy-5-oxo-1,3-naphthalenedicarboxylate (8a) and Diethyl 5,6,7,8-Tetrahydro-7,7-dimethyl-5-oxo-1,3-naphthalenedicarboxylate (9a)
Sodium hydride (50% oil, 48 mg, 1 mmol) was added to a mixture of ester 7a (211 mg, 1 mmol), DMAP (12 mg, 0.1 mmol) and diethyl ethoxymethylenemalonate (433 mg, 2 mmol) stirred at 0 ˚C under nitrogen. The reaction mixture immediately became yellow with release of hydrogen. After stirring for 10 min at r.t., the mixture was heated at 180 ˚C for 1 h. After cooling at r.t., the mixture was diluted with CH2Cl2 and hydrolyzed with sat. aq NH4Cl. Workup gave an oil which was purified by flash chromatography (SiO2, PE-Et2O, 80:20) to afford α-tetralone 8a (50 mg, 15%) and
α-tetralone 9a (170 mg, 53%).
Compound 8a: mp 62-64 ˚C. TLC (SiO2, PE-Et2O, 50:50): R f  = 0.39. IR (KBr film): 2950, 1717, 1701, 1635, 1605, 1443, 1228, 1208, 1191, 1150, 867, 774, 683 cm. ¹H NMR (300 MHz, CDCl3): δ = 14.18 (s, 1 H, OH), 8.62 (s, 1 H, H-2), 4.32 (q, ³ J = 7.1 Hz, 4 H, 2 × OCH 2CH3), 3.25 (s, 2 H,
H-8), 2.55 (s, 2 H, H-6), 1.38 (t, ³ J = 7.1 Hz, 6H, 2 × OCH2CH 3), 1.06 [s, 6 H, gem-(CH 3)2]. ¹³C NMR (75.5 MHz, CDCl3): δ = 206.1 (C=O), 166.1 (OC=O), 166.0 (OC=O), 165.0 (C-4), 151.9 (C-8a), 141.4 (C-2), 120.7 (C-1), 117.9 (C-4a), 117.6 (C-3), 61.7 (OCH2CH3), 61.6 (OCH2CH3), 52.0 (C-6), 42.2 (C-8), 33.1 (C-7), 28.5 [gem-(CH3)2], 14.7 (OCH2 CH3), 14.6 (OCH2 CH3). ESI-HRMS: m/z calcd for C18H22O6 [MNa+]: 357.1314; found: 357.1320.
Compound 9a: mp 78 ˚C. TLC (SiO2, PE-Et2O, 50:50): R f  = 0.56. IR (KBr film): 2977, 2958, 2870, 1715, 1691, 1605, 1466, 1449, 1418, 1389, 1225, 1195, 1148, 1022, 755 cm. ¹H NMR (300 MHz, CDCl3): δ = 8.81 (d, ³ J = 1.8 Hz, 1 H, H-4), 8.68 (d, ³ J = 1.8 Hz, 1 H, H-2), 4.32 (q, ³ J = 7.1 Hz, 4 H, 2 × OCH 2CH3), 3.24 (s, 2 H, H-8), 2.54 (s, 2 H, H-6), 1.42 (t, ³ J = 7.1 Hz, 3 H, OCH2CH 3), 1.40 (t, ³ J = 7.1 Hz, 3 H, OCH2CH 3), 1.07 [s, 6 H, gem-(CH 3)2]. ¹³C NMR (75.5 MHz, CDCl3): δ = 197.5 (C=O), 166.6 (OC=O), 166.5 (OC=O), 148.4 (C-8a), 136.3 (C-4a), 133.6 (C-2), 131.9
(C-4), 131.7 (C-1), 129.2 (C-3), 61.9 (2 × OCH2CH3), 52.0 (C-6), 42.0 (C-8), 33.3 (C-7), 29.0 [gem-(CH3)2], 14.7 (OCH2 CH3), 14.6 (OCH2 CH3). ESI-HRMS: m/z calcd for C18H22O5 [MNa+]: 341.1359; found: 341.1357.