Synlett 2009(9): 1474-1476  
DOI: 10.1055/s-0029-1217160
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Palladium-Catalyzed Carbonyl Allylation: Synthesis of Enantiomerically Pure α-Substituted Allylboronic Esters

Enrique Fernández, Jörg Pietruszka*
Institut für Bioorganische Chemie , Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, Im Stetternicher Forst, Geb. 15.8, 52426 Jülich, Germany
Fax: +49(2461)616196; e-Mail: j.pietruszka@fz-juelich.de;
Further Information

Publication History

Received 26 February 2009
Publication Date:
13 May 2009 (online)

Abstract

Palladium-catalyzed carbonyl allylation of stable alkenylboronic ester with SnCl2 proceeded diastereoselectively to afford α-substituted allylboronic esters; the assignment of their configuration as well as allyl additions are presented.

    References and Notes

  • 1a Hoppe D. Stereoselective Synthesis, In Science of Synthesis (Houben-Weyl)   3rd ed., Vol. E21:  Helmchen G. Hoffmann RW. Mulzer J. Schaumann E. Thieme; Stuttgart: 1996.  p.1357-1409  
  • 1b Roush WR. Stereo-selective Synthesis, In Science of Synthesis (Houben-Weyl)   3rd ed., Vol. E21:  Helmchen G. Hoffmann RW. Mulzer J. Schaumann E. Thieme; Stuttgart: 1996.  p.1410-1486  
  • 1c Denmark SE. Almstead NG. In Modern Carbonyl Chemistry   Otera J. Wiley-VCH; Weinheim: 2000.  p.299-401  
  • 1d Chemler SR. Roush WR. In Modern Carbonyl Chemistry   Otera J. Wiley-VCH; Weinheim: 2000.  p.403-490  
  • 1e Yamamoto Y. Asao N. Chem. Rev.  1993,  93:  2207 
  • 2 Hoffmann RW. Weidmann U. J. Organomet. Chem.  1980,  195:  137 
  • Selected recent examples:
  • 3a Pietruszka J. Schöne N. Frey W. Grundl L. Chem. Eur. J.  2008,  14:  5178 
  • 3b Pietruszka J. Schöne N. Synthesis  2006,  24 
  • 3c Pietruszka J. Schöne N. Eur. J. Org. Chem.  2004,  5011 
  • 3d Pietruszka J. Schöne N. Angew. Chem. Int. Ed.  2003,  42:  5638 
  • 3e Berrée F. Gernigon N. Hercouret A. Lin CH. Carboni B. Eur. J. Org. Chem.  2009,  329 
  • 3f Peng F. Hall DG. Tetrahedron Lett.  2007,  48:  3305 
  • 3g Ito H. Kawakami C. Sawamura M. J. Am. Chem. Soc.  2005,  127:  16034 
  • 3h Beckmann E. Desai V. Hoppe D. Synlett  2004,  2275 
  • 3i Pelz NF. Woodward AR. Burks HE. Sieber JD. Morken JP. J. Am. Chem. Soc.  2004,  126:  16328 
  • 3j Gao X. Hall DG. J. Am. Chem. Soc.  2003,  125:  9308 
  • 3k Flamme EM. Roush WR. J. Am. Chem. Soc.  2002,  124:  13644 
  • 3l Flamme EM. Roush WR. Beilstein J. Org. Chem.  2005,  1:  7 
  • 3m Matteson SD. Tetrahedron  1998,  54:  10555 
  • 3n Brown HC. Narla G.
    J. Org. Chem.  1995,  60:  4686 
  • 3o Stürmer R. Angew. Chem., Int. Ed. Engl.  1990,  29:  59 
  • 3p Hoffmann RW. Pure Appl. Chem.  1988,  60:  123 
  • 3q Hoffmann RW. Dresely S. Angew. Chem., Int. Ed. Engl.  1986,  25:  189 
  • Syntheses of 1a:
  • 4a Luithle JEA. Pietruszka J. J. Org. Chem.  2000,  65:  9194 
  • 4b Luithle JEA. Pietruszka J.
    J. Org. Chem.  1999,  64:  8287 
  • 4c Luithle JEA. Pietruszka J. Witt A. Chem. Commun.  1998,  2651 
  • 4d For an improved synthesis of the auxiliary, see: Bischop M. Cmrecki V. Ophoven V. Pietruszka J. Synthesis  2008,  2488 
  • Applications of 2a in natural product syntheses:
  • 5a Pietruszka J. Rieche ACM. Schöne N. Synlett  2008,  2525 
  • 5b Pietruszka J. Rieche ACM. Adv. Synth. Catal.  2008,  350:  1407 
  • 6a Tamaru Y. Eur. J. Org. Chem.  2005,  2647 
  • 6b Masuyama Y. Kinugawa N. Kurusu Y. J. Org. Chem.  1987,  52:  3702 
  • 6c Yamamoto Y. Asao N. Chem. Rev.  1993,  93:  2207 
  • 6d Zanoni G. Pontiroli A. Marchetti A. Vidari G. Eur. J. Org. Chem.  2007,  3599 
  • 7a Masuyama Y. Takahara JP. Kurusu Y. J. Am. Chem. Soc.  1988,  110:  4473 
  • 7b Masuyama Y. Hayashi R. Otake K. Kurusu Y. J. Chem. Soc., Chem. Commun.  1988,  44 
  • 7c Okano T. Kiji J. Doi T. Chem. Lett.  1998,  5 
  • 7d Masuyama Y. Ito A. Kurusu Y. Chem. Commun.  1998,  315 
  • 7e Masuyama Y. Takahara JP. Kurusu Y. Tetrahedron Lett.  1989,  30:  3437 
  • 7f Takahara JP. Masuyama Y. Kurusu Y. J. Am. Chem. Soc.  1992,  114:  2577 
  • 9 Furlani D. Marton D. Tagliavini G. Zordan MJ.
    J. Organomet. Chem.  1988,  341:  345 
  • 10 Barrett AGM. Malecha JW. J. Chem. Soc., Perkin Trans. 1  1994,  1901 
  • 11 Freire F. Seco JM. Quiñoa E. Riguera R. J. Org. Chem.  2005,  70:  3778 ; attempts to separate the enantiomers by chromatographic methods failed; however, since starting from diastereomerically pure reagents with no racemization expected during the addition, the Mosher method lends additional support to the assignment
8

General Procedure for the Palladium-Catalyzed Carbonyl Allylation of Aldehydes with SnCl 2 - Synthesis of 7 To a solution of 1b (1.0 mmol) in DMF (3 mL) was added SnCl2 (3.0 mmol), PdCl2 (PhCN)2 (5 mol%), H2O (25 mmol), and the appropriate aldehyde (1.0 mmol). The solution was stirred at r.t. until the reaction was completed (monitored by TLC, 2 h). The reaction mixture was diluted with Et2O (120 mL) and washed successively with aq 10% HCl soln (10 mL), sat. NaHCO3 (10 mL), H2O (10 mL), and brine (10 mL). The extracts were dried over anhyd MgSO4, the solvent was removed under reduced pressure and the crude product subjected to flash column chromatography on SiO2 (PE-EtOAc, 90:10) and MPLC (PE-EtOAc, 98:2) affording α-substituted allylboronic esters 7, 8, and 9 as colorless foams. Selected Data for 7b Prepared according to the general procedure: 79% yield of 7b after flash column chromatography. [α]D ²0 -93.2 (c 1.02, CHCl3). ¹H NMR (600 MHz, CDCl3): δ = 1.85 (dd, ³ J 2,1 = 6.0 Hz, ³ J 2,3 = 9.7 Hz, 1 H, 2-H), 2.02 (d, ³ J OH,1 = 2.3 Hz, 1 H, OH), 2.97 (s, 6 H, OCH3), 4.57 (dd, ³ J 1,OH = 2.3 Hz, ³ J 1,2 = 6.0 Hz, 1 H, 1-H), 4.73 (ddd, 4 J 4- E ,2 = 0.7 Hz, ² J 4- E ,4- Z  = 1.9 Hz, ³ J 4- E ,3 = 17.1 Hz, 1 H, 4-H E ), 4.89 (dd, ² J 4- Z ,4- E  = 1.9 Hz, ³ J 4- Z ,3 = 10.2 Hz, 1 H, 4-H Z ), 5.29 (s, 2 H, 4′-H, 5′-H), 5.53 (ddd, ³ J 3,2 = 9.9 Hz, ³ J 3,4- Z  = 9.9 Hz, ³ J 3,4- E  = 17.1 Hz, 1 H, 3-H), 7.01-7.40 (m, 25 H, arom. CH). ¹³C NMR (151 MHz, CDCl3): δ = 40.10 (C-2), 51.98 (OCH3), 72.65 (C-1), 78.22 (C-4′, C-5′), 83.60 (CPh2OMe), 117.78 (C-4), 126.58, 127.03, 127.62, 127.67, 127.79, 127.86, 128.05, 128.84, 129.89 (arom. CH), 134.25 (C-3), 141.20, 141.31, 143.18 (arom. C ipso ). Anal. Calcd (%) for C40H39BO5 (610.29): C, 78.69; H, 6.44. Found: C, 78.26; H, 6.59.