Subscribe to RSS
DOI: 10.1055/s-0029-1217164
A Novel One-Pot Stereoselective Synthesis of N-Protected α-Amino Acids from Morita-Baylis-Hillman Acetates
Publication History
Publication Date:
13 May 2009 (online)
Abstract
The first example of an operationally simple direct regio- and diastereoselective introduction of N-protected α-amino acids into Morita-Baylis-Hillman (MBH) acetates is reported. The DABCO-catalyzed reaction of MBH acetates with 2-phenyl-1,3-oxazol-5-one affords N-protected α-amino acids regioselectively in excellent yield (81-93%) with high diastereoselectivity (>92%) at ambient temperature. The synthetic protocol involves SN2′-SN2′ reaction and water-driven ring-opening cascades in a one-pot procedure, which are salient features of the present investigation.
Key words
Morita-Baylis-Hillman reaction - SN2 reaction - α-amino acids - regio- and diastereoselective - one-pot synthesis
-
1a
Wang L.Schultz PG. Angew. Chem. Int. Ed. 2005, 44: 34 -
1b
Medical
Chemistry of Bioactive Natural Products
Liang X.-T.Fang W.-S. Wiley; Hoboken NJ: 2006. p.35-72 -
1c
Kim RM,Kahne DE, andChapman KT. inventors; PCT Int. Appl. WO 2000069893. ; Chem. Abstr. 2000, 134, 5162 -
1d
Shang G.Yang Q.Zhang X. Angew. Chem. Int. Ed. 2006, 45: 6360 -
1e
Williams RM.Hendrix JA. Chem. Rev. 1992, 92: 889 -
1f
Stammer CH. Tetrahedron 1990, 46: 2231 -
1g
Heimgartner H. Angew. Chem., Int. Ed. Engl. 1991, 30: 238 - 2
Shendage DM.Fröhlich R.Haufe G. Org. Lett. 2004, 6: 3675 -
3a
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 -
3b
Yeo JE.Yang X.Kim HJ.Koo S. Chem. Commun. 2004, 236 -
3c
Luo S.Wang PG.Cheng J.-P. J. Org. Chem. 2004, 69: 555 -
3d
Aggrawal VK.Patin A.Tisserand S. Org. Lett. 2005, 7: 2555 -
3e
Lee KY.Gowrisankar S.Kim JN. Tetrahedron Lett. 2005, 46: 5387 -
3f
Wasnaire P.Wiaux M.Touillaux R.Markó IE. Tetrahedron Lett. 2006, 47: 985 -
3g
Basavaiah D.Rao KV.Reddy R. J. Chem. Soc. Rev. 2007, 36: 1581 -
3h
Shi Y.-L.Shi M. Eur. J. Org. Chem. 2007, 2905 -
3i
Masson G.Housseman C.Zhu J. Angew. Chem. Int. Ed. 2007, 4614 -
3j
Singh V.Yadav GP.Maulik PR.Batra S. Tetrahedron 2008, 64: 2979 -
4a
Kundu MK.Sundar N.Kumar SK.Bhat SV.Biswas S.Valecha N. Bioorg. Med. Chem. Lett. 1999, 9: 731 -
4b
Basavaiah D.Hyma RS.Kumaragurubaran N. Tetrahedron 2000, 56: 5905 -
4c
Kaye PT.Musa MA. Synth. Commun. 2003, 33: 1755 -
4d
Patra A.Batra S.Bhaduri AP.Khanna A.Chander R.Dikshit M. Biosci. Med. Chem. 2003, 11: 2269 -
4e
de Souza ROMA.Meireles BA.Aguiar CS.Vasconcellos M. Synthesis 2004, 1595 -
4f
Vasconcellos M.Silva TMS.Camara CA.Martins RM.Lacerda KM.Lopes HM.Pereira VLP.de Souza ROMA.Crespo LTC. Pest. Manage. Sci. 2006, 62: 288 -
4g
de Souza ROMA.Pereira VLP.Muzitano MF.Falcao CAB.Rossi-Bergmann B.Filho EBA.Vasconcellos M. Eur. J. Med. Chem. 2007, 42: 99 -
5a
Cho C.-W.Kong J.-R.Krische MJ. Org. Lett. 2004, 6: 1337 -
5b
Singh V.Saxena R.Batra S. J. Org. Chem. 2005, 70: 353 -
5c
Ma S.Yu S.Peng Z.Guo H. J. Org. Chem. 2006, 71: 9865 -
5d
Singh V.Batra S. Eur. J. Org. Chem. 2007, 2970 -
5e
Gowrisankar S.Kim SJ.Lee J.-E.Kim JN. Tetrahedron Lett. 2007, 48: 4419 -
5f
Lee HS.Kim JM.Kim JN. Tetrahedron Lett. 2007, 48: 4119 -
5g
Selvakumar N.Kumar PK.Shekar Reddy KC.Chandra Chary B. Tetrahedron Lett. 2007, 48: 2021 -
6a
Yadav LDS.Yadav S.Rai VK. Green Chem. 2006, 8: 455 -
6b
Yadav LDS.Rai VK. Synlett 2007, 1227 -
6c
Yadav LDS.Rai VK. Tetrahedron Lett. 2008, 49: 5553 -
6d
Yadav LDS.Rai VK.Yadav BS. Tetrahedron 2009, 65: 1306 -
7a
Yadav LDS.Awasthi C.Rai A. Tetrahedron Lett. 2008, 49: 6360 -
7b
Yadav LDS.Patel R.Srivastava VP. Synlett 2008, 1789 -
7c
Yadav LDS.Awasthi C. Tetrahedron Lett. 2009, 50: 715 - 8
Vandenberg GE.Harrison JB.Carter HE.Magerlein BJ. Org. Synth., Coll. Vol. V 1973, 946 - 9
Moorthy JN.Singhal N. J. Org. Chem. 2005, 70: 1926 -
10a
Basavaiah D.Pandiaraju S.Padmaja K. Synlett 1996, 393 -
10b
Basavaiah D.Satyanarayana T. Org. Lett. 2001, 3: 3619 -
10c
Kabalka GW.Venkataiah B.Dong G. Org. Lett. 2003, 5: 3803 -
10d
Yadav JS.Gupta MK.Pandey SK.Reddy BVS.Sarma AVS. Tetrahedron Lett. 2005, 46: 2761 -
10e
Nag S.Pathak R.Kumar M.Shukla PK.Batra S. Bioorg. Med. Chem. Lett. 2006, 16: 3824 -
11a
Chung YM.Gong JH.Kim TH.Kim JN. Tetrahedron Lett. 2001, 42: 9023 -
11b
Du Y.Han X.Lu X. Tetrahedron Lett. 2004, 45: 4967 -
11c
Li J.Wang X.Zhang Y. Tetrahedron Lett. 2005, 46: 5233 -
11d
Singh V.Yadav GP.Maulik PR.Batra S. Tetrahedron 2006, 62: 8731 -
11e
Lee KY.Gowrisankar S.Lee YJ.Kim JN. Tetrahedron 2006, 62: 8798 - 12
Cho C.-W.Krische MJ. Angew. Chem. Int. Ed. 2004, 43: 6689 -
13a
Trost BM.Tsui HC.Toste FD. J. Am. Chem. Soc. 2000, 122: 3534 -
13b
Roy O.Riahi A.Henin F.Muzart J. Tetrahedron 2000, 56: 8133 -
13c
Kobalaka GW.Dong G.Venkataiah B.Chen C. J. Org. Chem. 2005, 70: 9207 -
13d
Nemot T.Fukuyama T.Yamamoto E.Tamura S.Fukuda T.Matsumoto T.Akimoto Y.Hamada Y.Hamada Y. Org. Lett. 2007, 9: 927 - 14
Shafiq Z.Liu L.Liu Z.Wang D.Chen Y.-J. Org. Lett. 2007, 9: 2525 - 15
Basavaiah D.Krishnamacharyulu M.Hyma RS.Sarma PKS.Kumaragurubaran N. J. Org. Chem. 1999, 64: 1197
References and Notes
Isolation of Intermediate
3a and its Conversion into the Corresponding N-Protected α-Amino
Acid 4a
To a well-stirred solution of MBH acetate 1 (2 mmol) in THF (10 mL), DABCO (0.4
mmol) was added and stirred for 30 min at r.t. followed by addition
of 2-phenyl-1,3-oxazol-5-one 2 (2 mmol)
and stirring at r.t. for 5.5 h (Table
[¹]
).
After completion of the reaction as indicated by TLC, the solvent
was evaporated under reduced pressure, H2O (20 mL) was
added, and the product was extracted with EtOAc (3 × 20
mL). The combined organic layer was washed with brine (25 mL), dried
over MgSO4, filtered, and evaporated to dryness. The
crude product thus obtained was purified by column chromatography
to afford an analytically pure sample of a single diastereomer 3a (Table
[¹]
).
The product 3a (2 mmol) was dissolved in
THF (10 mL), then H2O (5 mL) was added, and the reaction
mixture was stirred at r.t. for 3 h. After completion of the reaction,
H2O (10 mL) was added and the combined organic layer
was extracted with CH2Cl2 (3 × 10
mL), concentrated under reduced pressure, and the crude product 4a thus obtained was recrystallized from
EtOH to afford an analytically pure sample of 4a quantitatively.
Characterization Data for the Isolated Intermediate
3a
Pale yellow solid; yield 89%; mp 199-201 ˚C.
IR (KBr): νmax = 3039,
2217, 1773, 1605, 1579, 1459, 1316 cm-¹.
¹H
NMR (400 MHz, CDCl3/TMS): δ = 4.19
(d, 1 H, J
ArCH,NCH = 11.6
Hz, ArCH), 4.41 (d, 1 H, J
ArCH,NCH = 11.6 Hz, NCH), 5.80 (s, 1 H, =CH), 5.92
(s, 1 H, =CH), 7.17-7.73 (m, 10 Harom). ¹³C
NMR (100 MHz, CDCl3/TMS): δ = 39.1, 63.8,
117.2, 119.8, 126.5, 127.3, 128.1, 129.2, 129.8, 130.6, 131.3, 132.0,
133.1, 165.9, 172.8. MS (EI): m/z = 302 [M+]. Anal.
Calcd for C19H14N2O2:
C, 75.48; H, 4.67; N, 9.27. Found: C, 75.19; H, 4.31; N, 9.46.
General Procedure
for the One-Pot Synthesis of N-protected α-Amino Acids
4
The MBH acetate 1 (2 mmol)
was dissolved in THF (10 mL) DABCO (0.4 mmol) was added, and the
reaction mixture was stirred for 30 min at r.t. Thereafter, 2-phenyl-1,3-oxazol-5-one
(2, 2 mmol) was added to the reaction mixture, and
it was stirred at r.t. for 6-8 h followed by addition of H2O
(5 mL) and stirring was continued for the next 1-2 h at r.t.
(Table
[²]
). After
completion of the reaction as indicated by TLC, the solvent was
evaporated under reduced pressure, H2O (10 mL) was added
to the reaction mixture and extracted with CH2Cl2 (3 × 10
mL), the combined organic phase concentrated under reduced pressure,
and the crude product 4 thus obtained was
recrystallized from EtOH to afford a diastereomeric mixture (>92:<8;
in the crude products the ratio was >90:<10 as
determined by ¹H NMR spectroscopy). The product
on second recrystallization from EtOH furnished an analytically
pure sample of a single diastereomer 4 (Table
[²]
). On the basis of comparison
of J values to literature ones,³j,¹¹e the anti stereochemistry was assigned to 4, as the coupling constant (J
NCH,ArCH = 11.6-11.9
Hz) for 4 was greater than that for very
minor (<6%) syn diastereomer, J
NCH,ArCH = 3.8
Hz. Characterization Data of Representative
Compounds 4
Compound 4a:
pale yellow solid; yield 90%; mp 143-145 ˚C.
IR (KBr): νmax = 3355-2659,
3044, 2218, 1677, 1601, 1588, 1453, 1319 cm-¹. ¹H
NMR (400 MHz, CDCl3/TMS): δ = 4.47
(d, 1 H, J
ArCH,NCH = 11.8
Hz, ArCH), 4.91 (d, 1 H, J
ArCH,NCH = 11.8
Hz, NCH), 5.79 (s, 1 H, =CH),
5.96 (s, 1 H, =CH), 7.23-7.89 (m, 10 Harom),
8.19 (br s, 1 H, NH, exchangeable with D2O), 11.21 (br
s, 1 H, OH, exchangeable with D2O). ¹³C
NMR (100 MHz, CDCl3/TMS): δ = 39.5, 60.1,
117.3, 120.3, 125.9, 126.7, 127.9, 129.3, 130.0, 130.8, 131.5, 132.3,
133.5, 171.2, 173.8. MS (EI): m/z = 320 [M+]. Anal.
Calcd for C19H16N2O3:
C, 71.24; H, 5.03; N, 8.74. Found: C, 71.49; H, 4.71; N, 9.12.
Compound 4i: pale yellow solid; yield 86%;
mp 172-174 ˚C. IR (KBr): νmax = 3357-2663,
3451, 3055, 2213, 1676, 1599, 1581, 1455, 1321 cm-¹. ¹H
NMR (400 MHz, CDCl3/TMS): δ = 4.41
(d, 1 H, J
ArCH,NCH = 11.9
Hz, ArCH), 4.95 (d, 1 H, J
ArCH,NCH = 11.9
Hz, NCH), 5.75 (s, 1 H, =CH), 5.98
(s, 1 H, =CH), 7.19-7.58 (m, 7 Harom),
7.71-7.87 (m, 2 Harom), 8.22 (br s, 1 H, NH,
exchangeable with D2O), 11.20 (br s, 1 H, OH, exchangeable
with D2O). ¹³C NMR (100 MHz,
CDCl3/TMS): δ = 39.2,
60.3, 117.7, 120.9, 124.8, 125.5, 126.2, 127.0, 128.1, 129.2, 130.3,
131.0, 132.6, 133.7, 142.5, 171.5, 174.1. MS (EI): m/z = 398 [M+].
Anal. Calcd for C19H15BrN2O3:
C, 57.16; H, 3.79; N, 7.02. Found: C, 57.54; H, 3.98; N, 6.79.