Synlett 2009(10): 1685-1689  
DOI: 10.1055/s-0029-1217334
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Catalytic Enantioselective Electrophilic Aminations of Acyclic α-Alkyl β-Carbonyl Nucleophiles

Xiaofeng Liu, Bingfeng Sun, Li Deng*
Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454-9110, USA
Fax: +1(781)73625164; e-Mail: deng@brandeis.edu;
Further Information

Publication History

Received 6 March 2009
Publication Date:
02 June 2009 (online)

Abstract

Highly enantioselective aminations of acyclic α-alkyl β-keto thioesters and trifluoroethyl α-methyl α-cyanoacetate (12) with as low as 0.05 mol% of a bifunctional cinchona alkaloid catalyst were established. This ability to afford high enantioselectivity for the amination of α-alkyl β-carbonyl compounds renders the 6′-OH cinchona alkaloid-catalyzed amination applicable for the enantio­selective synthesis of acyclic chiral compounds bearing N-substituted quaternary stereocenters. The synthetic application of this reaction is illustrated in a concise asymmetric synthesis of α-methylserine, a key intermediate previously utilized in the total synthesis of a small molecule immunomodulator, conagenin.

    References and Notes

  • For reviews, see:
  • 1a Gröger H. Chem. Rev.  2003,  103:  2795 
  • 1b Spino C. Angew. Chem. Int. Ed.  2004,  43:  1764 
  • 2a Vachal P. Jacobsen EN. Org. Lett.  2000,  2:  867 
  • 2b Vachal P. Jacobsen EN. J. Am. Chem. Soc.  2002,  124:  10012 
  • 2c Masumoto S. Usuda H. Suzuki M. Kanai M. Shibasaki M. J. Am. Chem. Soc.  2003,  125:  5634 
  • 2d Kato N. Suzuki M. Kanai M. Shibasaki M. Tetrahedron Lett.  2004,  45:  3147 
  • 2e Kato N. Suzuki M. Kanai M. Shibasaki M. Tetrahedron Lett.  2004,  45:  3153 
  • 2f Kato N. Tomita D. Maki K. Kanai M. Shibasaki M. J. Org. Chem.  2004,  69:  6128 
  • 2g Kato N. Mita T. Kanai M. Therrien B. Kawano M. Yamaguchi K. Danjo H. Sei Y. Sato A. Furusho S. Shibasaki M. J. Am. Chem. Soc.  2006,  128:  6768 
  • 2h Wang J. Hu XL. Jiang J. Gou SH. Huang X. Liu XH. Feng XM. Angew. Chem. Int. Ed.  2007,  46:  8468 
  • 2i Hou Z. Wang J. Liu X. Feng X. Chem. Eur. J.  2008,  14:  4484 
  • For reviews, see:
  • 3a Maruoka K. Ooi T. Chem. Rev.  2003,  103:  3013 
  • 3b O’Donell MJ. Acc. Chem. Res.  2004,  37:  506 
  • 3c Hashimoto T. Maruoka K. Chem. Rev.  2007,  107:  5656 
  • 4a Ooi T. Takeuchi M. Kameda M. Maruoka K. J. Am. Chem. Soc.  2000,  122:  5228 
  • 4b Ooi T. Takeuchi M. Maruoka K. Synthesis  2001,  1716 
  • 4c Ooi T. Takeuchi M. Ohara D. Maruoka K. Synlett  2001,  1185 
  • 4d Jew S.-s. Jeong B.-S. Lee J.-H. Yoo M.-S. Lee Y.-J. Park B.-s. Kim MG. Park H.-g. J. Org. Chem.  2003,  68:  4514 
  • 5a Marigo M. Juhl K. Jørgensen KA. Angew. Chem. Int. Ed.  2003,  42:  1367 
  • 5b Mashiko T. Hara K. Tanaka D. Fujiwara Y. Kumagai N. Shibasaki M. J. Am. Chem. Soc.  2007,  129:  11342 
  • 5c Mashiko T. Kumagai N. Shibasaki M. Org. Lett.  2008,  10:  2725 
  • 6a Saaby S. Bella M. Jørgensen KA. J. Am. Chem. Soc.  2004,  126:  8120 
  • 6b Liu X. Li H. Deng L. Org. Lett.  2005,  7:  167 
  • 6c Xu X. Yabuta T. Yuan P. Takemoto Y. Synlett  2006,  137 
  • 6d Terada M. Nakano M. Ube H.
    J. Am. Chem. Soc.  2006,  128:  16044 
  • 6e Pihko P. Pohjakallio A. Synlett  2004,  2115 
  • 7 Brandes S. Belle M. Kjærsgaard A. Jørgensen KA. Angew. Chem. Int. Ed.  2006,  45:  1147 
  • 8a Li H. Wang Y. Tang L. Deng L. J. Am. Chem. Soc.  2004,  126:  9906 
  • 8b Li H. Wang Y. Tang L. Wu F. Liu X. Guo C. Foxman BM. Deng L. Angew. Chem. Int. Ed.  2004,  44:  105 
  • The β-ketothioester is more acidic than the corresponding β-ketoester, see:
  • 9a Bordwell FG. Fried HE. J. Org. Chem.  1991,  56:  4218 
  • 9b Bordwell FG. Acc. Chem. Res.  1988,  21:  456 
  • 9c Bell RP. The Proton in Chemistry   Cornell University Press; Ithica / NY: 1959. 
  • 10a Yamashita T. Iijima M. Nakamura H. Isshiki K. Naganawa H. Hattori S. Hamada M. Ishizuka M. Takeuchi T. Iitaka Y. J. Antibiot.  1991,  44:  557 
  • 10b Sano S. Miwa T. Hayashi K. Nozaki K. Ozaki Y. Nagao Y. Tetrahedron Lett.  2001,  42:  4029 
11

Experimental procedure for the asymmetric amination of 3 (or 10) with 4a catalyzed by QD-1: To a solution of 3 or 10 (0.22 mmol, 1.1 equiv) and QD-1 in toluene (2.0 mL) at the indicated temperature under stirring, a solution of 4a in toluene (0.50 M, 0.40 mL, 0.20 mmol) was added dropwise in 5-10 min. The resulting reaction mixture was stirred until the color of the solution turned from yellow to colorless (or at the indicated time), and the amination product was isolated by flash chromatography.

12

Experimental procedure for the asymmetric amination of 3 (or 10) with 4a catalyzed by Q-1: A suspension of Q-1 in toluene (2.0 mL) was subjected to ultrasound until no chunky solid was visible (˜15 min). The resulting mixture was heated at 110 ˚C until a clear solution was formed (10-15 min). While it was still hot, the solution was allowed to pass a cotton plug to remove any trace amount of insoluble residue and then cooled to room temperature. Then 3 (or 10) (0.22 mmol, 1.1 equiv) was added. This mixture was stirred at the indicated temperature and a solution of 4a (0.50 M, 0.40 mL, 0.20 mmol) in toluene was added dropwise in 5-10 min. The stirring was continued until the color of the solution turned from yellow to colorless (or at the indicated time) and the amination product was isolated by flash chromatography separation.