RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217343
Chemical N-Glycosylation by Asparagine under Integrated Microfluidic/Batch Conditions
Publikationsverlauf
Publikationsdatum:
02. Juni 2009 (online)
Abstract
An integrated microfluidic/batch system was applied to the chemical N-glycosylation by the asparagine amide group, a key glycosyl bond-formation reaction in the synthesis of N-glycopeptides. By applying the advantageous features of microfluidic conditions, that is, efficient mixing and rapid heat transfer, the GlcNTrocβAsn and the Fucα(1-6)GlcNTrocβAsn fragments were efficiently prepared.
Key words
N-glycosylation - asparagine - microreactor - oligosaccharide - N-glycopeptide
-
1a
Introduction to Glycoscience Synthesis of Carbohydrates, In Comprehensive Glycoscience, from Chemistry
to Systems Biology
Vol 1:
Kamerling JP.Boons G.-J.Lee YC.Suzuki A.Taniguchi N.Voragen AGJ. Elsevier; Oxford: 2007. -
1b
Tanaka K.Fukase K. Polymer-Supported and Tag-Assisted Methods in Oligosaccharide Synthesis in Glycoscience: Chemistry and Chemical Biology 2nd ed., Vol. I-III:Fraser-Reid BO.Tatsuta K.Thiem J. Springer; New York: 2009. -
2a
Kahne D.Walker S.Cheng Y.Engen DV. J. Am. Chem. Soc. 1989, 111: 6881 -
2b
Garcia BA.Gin DY.
J. Am. Chem. Soc. 2000, 122: 4269 - 3
Tanaka H.Iwata Y.Takahashi D.Adachi M.Takahashi T. J. Am. Chem. Soc. 2005, 127: 1630 -
4a
Yu B.Tao H. Tetrahedron Lett. 2001, 42: 2405 -
4b
Adinolfi M.Barone G.Iadonisi A.Schiattarella M. Synlett 2002, 269 -
4c
Cai S.Yu B. Org. Lett. 2003, 5: 3827 - 5
Tanaka K.Fujii Y.Tokimoto H.Mori Y.Tanaka S.Bao G.-m.Siwu ERO.Nakayabu A.Fukase K. Chem. Asian J. 2009, 4: 574; based on the established solid-supported protocol, N-glycosylation strategy with the optimal protection groups on 1a,b and 2 will be applied to the future glycopeptide synthesis - For representative reviews, see:
-
6a
Microreaction Technology
Ehrfeld W. Springer; Berlin: 1998. -
6b
Microsystem Technology
in Chemistry and Life Sciences
Manz A.Becker H. Springer; Berlin: 1998. -
6c
Ehrfeld W.Hessel V.Lowe H. Microreactors Wiley-VCH; Weinheim: 2000. -
6d
Hessel V.Hardt S.Lowe H. Chemical Micro Process Engineering Wiley-VCH; Weinheim: 2004. -
6e
Yoshida J.-I.Suga S.Nagaki A.
J. Synth. Org. Chem. Jpn. 2005, 63: 511 - For recent applications, especially to oligosaccharides synthesis, see:
-
7a
Pennemann H.Hessel V.Loewe H. Chem. Eng. Sci. 2004, 59: 4789 -
7b
Jahnisch K.Hessel V.Loewe H.Baerns M. Angew. Chem. Int. Ed. 2004, 43: 406 -
7c
Nagaki A.Togai M.Suga S.Aoki N.Mae K.Yoshida J.-I. J. Am. Chem. Soc. 2005, 127: 11666 -
7d
Ratner DM.Murphy ER.Jhunjhunwala M.Snyder DA.Jensen KF.Seeberger PH. Chem. Commun. 2005, 578 -
7e
Flogel O.Codee JDC.Seebach D.Seeberger PH. Angew. Chem. Int. Ed. 2006, 45: 7000 -
7f
Geyer K.Seeberger PH. Helv. Chim. Acta 2007, 90: 395 -
7g
Carrel FR.Geyer K.Jeroen DC.Codee JDC.Seeberger PH. Org. Lett. 2007, 9: 2285 -
7h
Usutani H.Tomida Y.Nagaki A.Okamoto H.Nokami T.Yoshida J. J. Am. Chem. Soc. 2007, 129: 3046 -
7i
Tanaka K.Motomatsu S.Koyama K.Fukase K. Tetrahedron Lett. 2008, 49: 2010 -
8a
Fukase K.Takashina M.Hori Y.Tanaka D.Tanaka K.Kusumoto S. Synlett 2005, 2342 -
8b
Tanaka S.Goi T.Tanaka K.Fukase K. J. Carbohydr. Chem. 2007, 26: 369 -
8c
Tanaka K.Motomatsu S.Koyama K.Tanaka S.Fukase K. Org. Lett. 2007, 9: 299 -
8d
Tanaka K.Fukase K. Synlett 2007, 164 -
8e
Tanaka K.Mori Y.Fukase K. J. Carbohydr. Chem. 2009, 28: 1
References and Notes
IMM micromixer: http://www.imm-main2.de/
10Comet X-01 micromixer: http://homepage3.nifty.com/techno-applications/ or e-mail: yukio-matsubara@nifty.com.
11
Procedure of N-Glycosylation
Using an Integrated Microfluidic/Batch System
A
solution of TMSOTf (33 µL, 180 µmol, 43 mM) in
CH2Cl2 (4.2 mL) was injected, in advance,
into the micromixer by a syringe pump at a flow rate of 1.0 mL/min.
Then a solution of donor 1a (1.0 g, 1.1
mmol, 260 mM) and acceptor 2 (110 mg, 360 µmol,
86 mM) dissolved in CH2Cl2 (4.2 mL) was injected
into the IMM micromixer by another syringe pump at a flow rate of
1.0 mL/min. The reaction was mixed at r.t. After the reaction
mixture was allowed to flow at r.t. for an additional 94 s through
a Teflon tube reactor (Φ = 1.0
mm, l = 1.0 m), the mixture was introduced
into a flask, and stirred for 12 h at this temperature. Then the
mixture was quenched by an aq NaHCO3 solution. The resulting
mixture was extracted with EtOAc, washed with brine, dried over Na2SO4,
filtered, and concentrated in vacuo to give the
crude
product. The residue was purified by column chromatography on silica
gel (from 25-33% EtOAc in hexane) to give N-glycoside 3a as
a white solid (376 mg, 85%). ESI-MS: m/z calcd
for C53H53Cl3N3O13 [M + H]+: 1044.3;
found: 1044.2. ¹H NMR (500 MHz, CDCl3): δ = 7.76
(d, J = 7.6
Hz, 1 H), 7.73 (d, J = 7.5
Hz, 1 H), 7.59 (d, J = 7.6
Hz, 1 H), 7.55 (d, J = 7.4
Hz, 1 H), 7.41-7.17 (m, 19 H), 6.80 (d, J = 8.5
Hz, 1 H), 5.91 (d, J = 9.2
Hz, 1 H), 5.88-5.80 (m, 1 H), 5.27 (dd, J = 17.2,
1.3 Hz, 1 H), 5.19 (dd, J = 10.5,
1.3 Hz, 1 H), 5.14-5.04 (m, 4 H), 4.89 (dd, J = 9.2, 9.2
Hz, 1 H), 4.75 (d, J = 12.1
Hz, 1 H), 4.69 (d, J = 12.0
Hz, 1 H), 4.68-4.58 (m, 3 H), 4.52-4.35 (m, 6
H), 4.15 (dd, J = 6.9,
6.9 Hz, 1 H), 3.65-3.61 (m, 3 H), 3.56-3.49 (m,
2 H), 2.86 (dd, J = 16.7,
3.8 Hz, 1 H), 2,68 (dd, J = 16.4,
4.2 Hz, 1 H).
Data for 3b
ESI-MS: m/z calcd for C63H67Cl3N3O19 [M + H]+:
1274.3; found: 1274.2. ¹H NMR (500 MHz, CDCl3): δ = 7.76
(d, J = 7.6
Hz, 1 H), 7.73 (d, J = 7.5
Hz, 1 H), 7.61 (d, J = 7.6 Hz,
1 H), 7.60 (d, J = 7.3
Hz, 1 H), 7.41-7.19 (m, 19 H), 6.89 (d, J = 8.2
Hz, 1 H), 5.94 (d, J = 8.6
Hz, 1 H), 5.86-5.79 (m, 1 H), 5.31-5.25 (m, 3
H), 5.18 (d, J = 11.6
Hz, 1 H), 5.13 (d, J = 12.2
Hz, 1 H), 5.06 (d, J = 12.4
Hz, 1 H), 4.99 (d, J = 3.5 Hz,
1 H), 4.90-4.87 (m, 2 H), 4.76 (d, J = 12.2
Hz, 1 H), 4.68 (dd, J = 12.1,
4.0 Hz, 2 H), 4.62-4.52 (m, 10 H), 4.37 (d, J = 11.8 Hz,
1 H), 4.23 (dd, J = 6.7,
6.7 Hz, 1 H), 3.80 (dd, J = 10.2,
3.5 Hz,1 H), 3.71 (dd, J = 11.8,
2.2 Hz, 1 H), 3.67-3.52 (m, 3 H), 2.85 (dd, J = 16.5,
3.6 Hz, 1 H), 2.69 (dd, J = 16.5,
3.9 Hz, 1 H), 2.09 (s, 3 H), 1.96 (s, 3 H), 1.06 (d, J = 6.5 Hz,
3 H).