Subscribe to RSS
DOI: 10.1055/s-0029-1217352
Strategies for the Synthesis of the Cyclopropyl-Substituted Lactone Family of Oxylipins
Publication History
Publication Date:
12 June 2009 (online)
Abstract
Biomimetic and other strategies that have been developed in the author’s laboratory for the synthesis of a subset of the group of enzymically oxidized lipids known as oxylipins are described. This set of oxylipins contains both a cyclopropane and a lactone, with the lactone ring size varying between six and nine members. A biomimetic approach employing cascade cyclization of an epoxyalkenoic acid was successful in creating the cyclopropane and six-membered lactone of C20 oxylipins such as the constanolactones in a single step, but failed in an attempt to create the nine-membered lactone of halicholactone. Solandelactones, C22 oxylipins containing a cyclopropane and an eight-membered lactone, were synthesized by directed Simmons-Smith cyclopropanation followed by Claisen rearrangement of a cyclic ketene acetal to construct the lactone
1 Introduction
2 The First Biomimetic Cascade Synthesis of an Oxylipin
3 Biomimetic Cascade Synthesis of Constanolactones A and B
4 A Failed Biomimetic Strategy for Halicholactone
5 Synthesis of the C22 Oxylipins Solandelactones A, B, E, and F
5.1 A Ring-Closing Metathesis Approach to the Octenalactone Portion of Solandelactones
5.2 The Petasis-Claisen Rearrangement Route to the Octenalactone Portion of Solandelactones
6 Conclusion
Key words
biomimetic synthesis - cascade synthesis - cyclopropanation - Claisen rearrangement - lactones - lipids
-
1a
Gerwick WH.Nagle DG.Proteau PJ. Top. Curr. Chem. 1993, 167: 117 -
1b
Gerwick WH. Chem. Rev. 1993, 93: 1807 - 2
Gerwick WH.Moghaddam MF.Hamberg M. Arch. Biochem. Biophys. 1991, 290: 436 - 3
Gerwick WH.Singh IP. In Lipid BiotechnologyKuo TM.Gardner HW. Marcel Dekker; New York: 2002. p.249-275 -
4a
Niwa H.Wakamatsu K.Yamada K. Tetrahedron Lett. 1989, 30: 4543 -
4b
Kigoshi H.Niwa H.Yamada K.Stout TJ.Clardy J. Tetrahedron Lett. 1991, 32: 2427 - 5
Higgs MD.Mulheirn LJ. Tetrahedron 1981, 37: 4259 - 6
Corey EJ.De B.Ponder JW.Berg JM. Tetrahedron Lett. 1984, 25: 1015 - 7
Corey EJ.Matsuda SPT. Tetrahedron Lett. 1987, 28: 4247 - 8
Corey EJ.d’Alarcoa M.Matsuda SPT.Lansbury PT.Yamada Y. J. Am. Chem. Soc. 1987, 109: 289 - 9
Brash AR. J. Am. Chem. Soc. 1989, 111: 1891 - 10
Baertschi SW.Brash A.Harris TM. J. Am. Chem. Soc. 1989, 111: 5003 - 11
White JD.Jensen MS. J. Am. Chem. Soc. 1993, 115: 2970 - 12
Jin H.Uenishi J.Christ W.Kishi Y. J. Am. Chem. Soc. 1986, 108: 5644 - 13
Gao Y.Hanson R.Klunder J.Ko SY.Sharpless KB. J. Am. Chem. Soc. 1987, 109: 5765 - 14
Takai K.Nitta K.Utimoto K.Masamune H. J. Am. Chem. Soc. 1986, 108: 7408 - 15
Leusink AJ.Budding HA.Drenth W. J. Organomet. Chem. 1968, 11: 541 - 16
Echavarren AM.Tueting DR.Stille JK. J. Am. Chem. Soc. 1988, 110: 4039 - 17
Van Tamelen EE.Anderson RJ. J. Am. Chem. Soc. 1972, 94: 8225 - 18
Derome AE. Modern NMR Techniques for Chemistry Research Pergamon; Oxford UK: 1987. p.209-220 - 19
Ueno Y.Okawara M. Tetrahedron Lett. 1976, 4597 - 20
Nagle DG.Gerwick WH. Tetrahedron Lett. 1990, 31: 2995 - 21
Nagle DG.Gerwick WH. J. Org. Chem. 1994, 59: 7227 - 22
White JD.Jensen MS. J. Am. Chem. Soc. 1995, 117: 6224 - 23
Leblanc Y.Fitzsimmons BJ.Adams J.Perez F.Rokach J. J. Org. Chem. 1986, 51: 789 - 24
Wong MYH.Gray GR. J. Am. Chem. Soc. 1978, 100: 3548 - 25
Barloy-Da Silva C.Benkouider A.Pale P. Tetrahedron Lett. 2000, 41: 3077 - 26
Yu J.Lai J.-Y.Ye J.Balu N.Reddy LM.Duan W.Fogel ER.Capdevila JH.Falck JR. Tetrahedron Lett. 2002, 43: 3939 - 27
Pietruszka J.Wilhelm T. Synlett 2003, 1698 - 28 On constanolactones C and D, see:
Pietruszka J.Rieche ACM.Schöne N. Synlett 2007, 2525 - On constanolactone E, see:
-
29a
Miyaoka H.Shigemoto T.Yamada Y. Tetrahedron Lett. 1996, 37: 7407 -
29b
Miyaoka H.Shigemoto T.Yamada Y. Heterocycles 1998, 47: 415 - 30 A proposed revision to the absolute
configuration of neohalicholactone(54)
was found to be in error:
Proteau PJ.Rossi JV.Gerwick WH. J. Nat. Prod. 1994, 57: 1717 - 31
White JD.Jensen MS. Synlett 1996, 31 - 32
Fallis AG.Hearn MTW.Jones ERH.Thaller V.Turner JL. J. Chem. Soc., Perkin Trans. 1 1973, 743 - 33
Gannett PM.Nagel DL.Reilley PJ.Lawson T.Sharpe J.Toth B. J. Org. Chem. 1988, 53: 1064 - 34
Takai K.Kuroda T.Nakatsukasa S.Oshiwa K.Nozaki H. Tetrahedron Lett. 1985, 26: 5585 - 35
Martin GE.Crouch RC. J. Nat. Prod. 1991, 54: 1 - 36
Critcher DJ.Connolly S.Mahon MF.Wills M.
J. Chem. Soc., Chem. Commun. 1995, 139 - 37
Critcher DJ.Connolly S.Wills M. Tetrahedron Lett. 1995, 36: 3763 - 38
Critcher DJ.Connolly S.Wills M. J. Org. Chem. 1997, 62: 6638 -
39a
Takemoto Y.Baba Y.Saha G.Nakao S.Iwata C.Tamaka T.Ibuka T. Tetrahedron Lett. 2000, 41: 3653 -
39b
Baba Y.Saha G.Nakao S.Iwata C.Tanaka T.Ibuka T.Ohishi H.Takemoto Y. J. Org. Chem. 2001, 66: 81 - 40
Takahashi T.Watanabe H.Kitahara T. Heterocycles 2002, 58: 99 - 41
Seo Y.Cho KW.Rho J.-R.Shin J.Kwon B.-M.Bok S.-H.Song J.-I. Tetrahedron 1996, 52: 10583 - 42
White JD.Martin WHC.Lincoln CM.Yang J. Org. Lett. 2007, 9: 3481 - 43
White JD.Lincoln CM.Yang J.Martin WHC.Chan DB. J. Org. Chem. 2008, 73: 4139 - 44
Mohapatra D.Yellol G. Arkivoc 2003, (ix): 21 - 45
Lincoln CM.White JD.Yokochi AFT. Chem. Commun. 2004, 2846 - 46
Tamborski CM.Ford FE.Soloski EJ. J. Org. Chem. 1963, 28: 237 - See:
-
47a
Nagasawa T.Handa Y.Onoguchi Y.Obba S.Suzuki K. Synlett 1995, 739 -
47b
Nagasawa T.Handa Y.Onoguchi Y.Suzuki K. Bull. Chem. Soc. Jpn. 1996, 69: 31 -
47c
Taylor RE.Engelhardt FC.Schmitt MJ.Yuan H. J. Am. Chem. Soc. 2001, 123: 2964 ; and references cited therein - 48
Still WC.Gennari C. Tetrahedron Lett. 1983, 24: 4405 -
49a
Guz NR.Phillips AJ. Org. Lett. 2002, 4: 2253 -
49b
Crimmins MT.King BW.Tabet EA. J. Am. Chem. Soc. 1997, 119: 7883 -
49c
Crimmins MT.King BW.Tabet EA.Chaudhary K. J. Am. Chem. Soc. 2001, 66: 894 - 50
Oshima K.Takai K.Hotta Y.Nozaki H. Tetrahedron Lett. 1978, 2417 - 52
Charette AB.Lebel HJ. J. Org. Chem. 1995, 60: 2966 -
53a
Petrzilka M. Helv. Chim. Acta 1978, 61: 3075 -
53b
Baudat R.Petrzilka M. Helv. Chim. Acta 1979, 62: 1406 -
54a
Robinson RA.Clark JS.Holmes AB. J. Am. Chem. Soc. 1993, 115: 10400 -
54b
Burton JW.Clark JS.Derrer S.Stork TC.Bendall JG.Holmes AB. J. Am. Chem. Soc. 1997, 119: 7483 - 55
Nagao Y.Hagiwara Y.Kumagai T.Ochiai M.Inoue T.Hashimoto K.Fujita E. J. Org. Chem. 1986, 51: 2391 - 56
Vlieghe P.Clerc T.Pannecouque C.Witvrouw M.De Clerq E.Salles JP.Kraus JL. J. Med. Chem. 2001, 44: 3014 - 57
Carling RW.Holmes AB. J. Chem. Soc., Chem. Commun. 1986, 325 - 58
Petasis NA.Bzowej EI. J. Am. Chem. Soc. 1990, 112: 6392 - 59
Anderson EA.Davidson JEP.Harrison JR.O’Sullivan PT.Burton JW.Collins I.Holmes AB. Tetrahedron 2002, 58: 1943 - 60
Saito S.Hasegawa T.Inaba M.Nishida R.Fujii T.Nomizu S.Moriwake T. Chem. Lett. 1984, 1389 - 61
Bessodes M.Komiotis D.Autonakis K. Tetrahedron Lett. 1986, 27: 579 -
62a
Davoren JE.Martin SF. J. Am. Chem. Soc. 2007, 129: 510 -
62b
Davoren JE.Harcken C.Martin SF. J. Org. Chem. 2008, 73: 391 - 63
Pietruszka J.Rieche ACM. Adv. Synth. Catal. 2008, 350: 1407
References
An ab initio calculation using a Hartree-Fock/6-31G** basis set places the barrier at 7-9 kcal˙mol-¹