Subscribe to RSS
DOI: 10.1055/s-0029-1217519
Studies on Fluorinated Annulated Nicotines: Concise Synthesis of cis-4,4-Difluoro-2,3,3a,4,5,9b-hexahydro-1-methyl-1H-pyrrolo[2,3-f]quinoline
Publication History
Publication Date:
25 June 2009 (online)
Abstract
A fused 6,6,5-tricyclic difluorinated nicotine analogue was efficiently assembled in five steps in 36% overall yield. The conformation-restricting unit is a six-membered fluorinated carbocycle. The gem-difluoromethylene group was introduced through an indium-promoted Barbier allylation of 3-bromo-3,3-difluoropropene. The construction of the tricyclic skeleton was achieved using an intramolecular azomethine ylide-alkene [3+2] cycloaddition.
Key words
fluorinated - intramolecular azomethine ylide-alkene-[3+2] cycloaddition - nicotine analogue - rigid conformation
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Wagner FF.Comins DL. Tetrahedron 2007, 63: 8065 -
1b
Hukkanen J.Jacob P.Benowitz NL. Pharmacol. Rev. 2005, 57: 79 -
1c
Breining SR. Curr. Top. Med. Chem. 2004, 4: 609 -
1d
Decker MW.Aneric SP. Neuronal Nicotinic Recept. 1999, 395 -
1e
Villemagne VL.Musachio JL.Scheffel U. Neuronal Nicotinic Recept. 1999, 235 -
1f
Glennon RA.Dukat M. Med. Chem. Res. 1996, 465 -
1g
McDonald IA.Cosford N.Vernier J.-M. Annu. Rep. Med. Chem. 1995, 30: 41 -
1h
Glennon RA.Maarouf A.Fahmy S.Martin B.Fan F.Yousif M.Shafik RM.Dukat M. Med. Chem. Res. 1993, 2: 546 - For our previous work, see:
-
2a
Sang Y.Zhao J.Jia X.Zhai H. J. Org. Chem. 2008, 73: 3589 -
2b
Yang X.Luo S.Fang F.Liu P.Lu Y.He M.Zhai H. Tetrahedron 2006, 62: 2240 -
2c
Luo S.Fang F.Zhao M.Zhai H. Tetrahedron 2004, 60: 5353 -
2d For a part of Rapoport’s work,
see:
Zhai H.Liu P.Luo S.Fang F.Zhao M. Org. Lett. 2002, 4: 4385 -
2e
Lennox JR.Turner SC.Rapoport H. J. Org. Chem. 2001, 66: 7078 -
2f
Turner SC.Zhai H.Rapoport H. J. Org. Chem. 2000, 65: 861 -
2g For representative work
from other labs, see:
Xu Y.-z.Choi J.Calaza MI.Turner SC.Rapoport H. J. Org. Chem. 1999, 64: 4069 -
2h
Ondachi PW.Comins DL. Tetrahedron Lett. 2008, 49: 569 -
2i
Comins DL.Laura S.King LS.Smith ED.Février FC. Org. Lett. 2005, 7: 5059 -
2j
Meijler MM.Matsushita M.Altobell LJ.Wirsching P.Janda KD. J. Am. Chem. Soc. 2003, 125: 7164 -
2k
Sarkar TK.Basak S.Slanina Z.Chow TJ.
J. Org. Chem. 2003, 68: 4206 -
2l
Ullrich T.Binder D.Pyerin M. Tetrahedron Lett. 2002, 43: 177 -
2m
Kanne DB.Abood LG. J. Med. Chem. 1988, 31: 506 -
2n
Glassco W.Suchocki J.George C.Martin BR.May EL. J. Med. Chem. 1993, 36: 3381 -
2o
Chavdarian CG.Seeman JI.Wooten JB. J. Org. Chem. 1983, 48: 492 -
2p
Wei ZL.Xiao YX.Yuan HB.Baydyuk M.Petukhov PA.Musachio JL.Kellar KJ.Kozikowski AP. J. Med. Chem. 2005, 48: 1721 -
2q
Chellappan SK.Xiao Y.Kellar KJ.Kozikowski AP. 231st ACS National Meeting, Atlanta, GA, 2006 American Chemical Society; Washington DC: 2006, Abstract MEDI-159 - 3
Spande TF.Garraffo HM.Edwards MW.Yeh HJC.Pannell L.Daly JW. J. Am. Chem. Soc. 1992, 114: 3475 -
4a
Rivkin A.Biswas K.Chou T.-C.Danishefsky SJ. Org. Lett. 2002, 4: 4081 -
4b
Sugimoto Y.Konoki K.Murata M.Matsushita M.Kanazawa H.Oishi T. J. Med. Chem. 2009, 52: 798 -
4c
Shah P.Westwell AD. J. Enzym. Inhib. Med. Chem. 2007, 22: 527 - For recent reviews, see:
-
5a
Thayer AM. Chem. Eng. News 2006, (June 5): 15 -
5b
Begue JP.Bonnet-Delpon D. J. Fluorine Chem. 2006, 127: 992 -
5c
Kirk KL. J. Fluorine Chem. 2006, 127: 1013 -
5d For recent excellent overviews,
see:
Ojima I. ChemBioChem 2004, 5: 628 -
5e
Chambers RD. Fluorine in Organic Chemistry Blackwell; Oxford: 2004. -
5f
Kirsch P. Modern Fluoroorganic Chemistry Wiley-VCH; Weinheim: 2004. -
5g
Uneyama K. Organofluorine Chemistry Blackwell; Oxford: 2006. -
6a
You Z.-W.Jiang Z.-X.Wang B.-L.Qing F.-L. J. Org. Chem. 2006, 71: 7261 -
6b
Zhang X.Xia H.Dong X.Jin J.Meng W.-D.Qing F.-L. J. Org. Chem. 2003, 68: 9026 -
8a
Chavdarian CG.Seeman JI.Wooten JB. J. Org. Chem. 1983, 48: 492 -
8b
Xu R.Dwoskin LP.Grinevich V.Sumithran SP.Crooks PA. Drug Dev. Res. 2002, 55: 173 -
8c
Crooks PA.Ayers JT.Xu R.Sumithran SP.Grinevich VP.Wilkins LH.Deaciuc AG.Allen DD.Dwoskin LP. Bioorg. Med. Chem. Lett. 2004, 14: 1869 -
9a
Xu R.Dwoskin LP.Grinevich VP.Deaciuc G.Crooks PA. Bioorg. Med. Chem. Lett. 2001, 11: 1245 -
9b
Crooks PA.Dwoskin LP.Grinevich VP.Xu R. PCT Int. Appl. WO 2002057275, 2002 , -
9c
Papke RL.Zheng G.Horenstein NA.Dwoskin LP.Crooks PAC. Bioorg. Med. Chem. Lett. 2005, 15: 3874 - 10
Chezal JM.Moreau E.Desbois N.Blache Y.Chavignon O.Teuladea JC. Tetrahedron Lett. 2004, 45: 553 -
11a
Kirihara M.Takuwa T.Takizawa S.Momose T. Tetrahedron Lett. 1997, 38: 2853 -
11b
Percy JM.Pintat S. Chem. Commun. 2000, 607 -
11c
Audouard C.Fawcett J.Griffiths GA.Percy JM.Pintat S.Smith CA. Org. Biomol. Chem. 2004, 2: 528 -
11d
Kargbo RB.Cook GR. Curr. Org. Chem. 2007, 11: 1287 - For intramolecular azomethine ylide-alkene [3+2] cycloaddition, see:
-
13a
Smith R.Livinghouse T. Tetrahedron 1985, 41: 3559 -
13b
Bolognesi ML.Andrisano V.Bartolini M.Minarini A.Rosini M.Tumiatti V.Melchiorre C. J. Med. Chem. 2001, 44: 105 - 14
Sato K.Nishimoto T.Tamoto K.Omote M.Ando A.Kumadaki I. Heterocycles 2002, 56: 403
References and Notes
The reagent, 3-bromo-3,3-difluoropropene, is available from the TCI Company, although we obtained it as a gift from Professors G. Zhao and F.-L. Qing of the Shanghai Institute of Organic Chemistry (see also Acknowledgment).
12The acetal deprotection proceeded much faster when the acid used was switched from oxalic acid to TsOH×H2O.
15
Preparation of
New Compounds
Compound 5
Indium
powder (67 mg, 0.58 mmol) and 3-bromo-3,3-difluoropropene (70 µL,
0.72 mmol) were added sequen-tially to a solution of 4 (94
mg, 0.45 mmol) in DMF (3 mL). The mixture was then sonicated for
3 h. After evaporation of DMF under reduced pressure, sat. aq NaHCO3 soln
and EtOAc were added. The two layers were separated, and
the
aqueous layer was further extracted with EtOAc. The combined organic
layers were dried (Na2SO4), filtered, and concentrated
to give a residue, which was chromatographed (EtOAc-PE,
1:5) to afford 5 (100 mg, 78%)
as a colorless oil: ¹H NMR (300 MHz, CDCl3): δ = 1.16
(t, J = 9.2
Hz, 3 H), 1.27 (t, J = 9.9
Hz, 3 H), 3.36-3.50 (m, 2 H), 3.54-3.65 (m, 1
H), 3.74-3.82 (m, 1 H), 4.99 (d, J = 9.6
Hz, 1 H), 5.36-5.45 (m, 1 H), 5.49 (d, J = 11.1
Hz, 1 H), 5.61-5.69 (m, 1 H), 5.88 (s, 1 H), 5.92-6.02
(m, 1 H), 7.31 (dd, J = 7.8,
4.5 Hz, 1 H), 8.04 (dd, J = 7.8,
1.5 Hz, 1 H), 8.53 (dd, J = 4.7,
1.7 Hz, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 15.0,
15.0, 60.2, 63.2, 70.4 (t, J = 31.1
Hz), 97.7 (t, J = 4.6
Hz), 120.1 (t, J = 244.8
Hz), 121.1 (t, J = 9.6
Hz), 123.4, 129.8 (t, J = 25.4 Hz),
133.7, 135.6, 147.7, 152.3 (d, J = 5.4
Hz). ¹9F NMR (282 MHz, CDCl3): δ = -109.59
(dm, J = 249.2
Hz, 1 F), -104.12 (dm, J = 248.7
Hz, 1 F). MS (MALDI): m/z = 310.1 [M + Na],
289.1 [M + 2H], 288.1
[M + H].
HRMS (MALDI): m/z calcd for
C14H19NO3F2 + H: 288.1411;
found: 288.1414.
Compounds 6a,b
To
a soln of 5 (108 mg, 0.38 mmol) in acetone
and H2O (1:1, 8 mL) was added PTSA˙H2O
(143 mg, 0.75 mmol). The mixture was heated at reflux for 2 h, cooled
to r.t., neutralized with sat. aq NaHCO3 soln, and extracted
with EtOAc. The combined organic layers were dried (MgSO4), filtered,
and concentrated. The residue was chromatog-raphed (EtOAc-PE,
1:1) to give a mixture of 6a and 6b (9:1, 71 mg, 89%) as a colorless
oil. ¹H NMR [300 MHz, CDCl3, three
compounds (two hemiacetals and one aldehyde), 0.49:0.42:0.09]: δ = 3.68
(d, J = 9.6
Hz, 0.42 H, 0.42 OH), 4.46 (d, J = 7.2
Hz, 0.49 H, 0.49 OH), 5.18-5.26 (m, 0.42 H), 5.26-5.29
(m, 0.09 H), 5.38-5.44 (m, 0.49 H), 5.48-2.62 (m,
1 H), 5.82-5.70 (m, 1 H), 5.93-6.07 (m, 0.49 H),
6.12-6.25 (m, 0.42 H), 6.49 (d, J = 9.9
Hz, 0.42 H), 6.65 (d, J = 5.7
Hz, 0.49 H), 7.35-7.39 (m, 0.91 H), 7.56 (dd, J = 7.7, 5.0
Hz, 0.09 H), 7.80-7.84 (m, 0.91 H), 8.28 (d, J = 8.1 Hz, 0.09
H), 8.66-8.69 (m, 0.91 H), 8.80 (d, J = 4.2
Hz, 0.09 H), 10.30 (s, 0.1 H) [0.1 H missing (0.1 OH)].
¹9F
NMR (282 MHz, CDCl3): δ = -111.29
(dt, J = 251.4, 11.8
Hz, 0.09 F), -110.33 (dt, J = 251.5,
10.9 Hz, 0.49 F),
-110.13 (dt, J = 251.3,
11.8 Hz, 0.42 F), -108.22 (dt, J = 251.5,
12.4 Hz, 0.42 F), -107.89 (dt, J = 251.3,
9.6 Hz, 0.49 F), -105.58 (dm, J = 251.4
Hz, 0.09 F). MS (EI): m/z (%) = 213 [M+],
136 (100). Anal. Calcd for C10H9F2NO2:
C, 56.34; H, 4.26; N, 6.57. Found: C, 56.44; H, 4.48; N, 6.70.
Compounds 7
A soln of 6 (222 mg, 1.04 mmol) and sarcosine (98%,
139 mg, 1.56 mmol) in toluene (18 mL) was heated at reflux under
N2 overnight, cooled to r.t., and concentrated. The residue
was diluted with brine and extracted with EtOAc. The combined organic
layers were dried (MgSO4), filtered, and concentrated.
The residue was chromatographed (EtOAc-PE, 1:1) to give
a pair of diastereomers of 7 (dr = 9:1,
171 mg, 68%) as a white solid: mp 82-83 ˚C (dec.). ¹H
NMR (300 MHz, CDCl3): δ = 2.18 (s,
3 H), 2.11-2.30 (m, 1 H), 2.33-2.42 (m, 1 H),
2.45-2.53 (m, 1 H), 2.93-3.07 (m, 1 H), 3.23-3.29
(m, 2 H), 4.75 (d, J = 7.8
Hz, 0.9 H), 5.17 (d, J = 23.4
Hz, 0.1 H), 6.30 (s, 1 H), 7.30-7.34 (dd, J = 7.8,
5.1 Hz, 1 H), 7.54 (d, J = 8.1
Hz, 0.1 H), 7.60 (d, J = 7.5,
1.2 Hz, 0.9 H), 8.56 (d, J = 4.8
Hz, 0.1 H), 8.61 (dd, J = 5.1,
1.2 Hz, 0.9 H). ¹9F NMR (282 MHz, CDCl3): δ =
-115.82
(d, J = 238.8
Hz, 0.1 F), -111.39 (dm, J = 249.7
Hz, 0.9 F), -109.14 (dm, J = 238.8
Hz, 0.1 F), -88.52 (dm, J = 249.7
Hz, 0.9 F). ESI-MS: m/z = 483.0 [2M + H],
263.0 [M + Na], 240.9 [M + H].
Anal. Calcd for C12H14F2N2O:
C, 59.99; H, 5.87; N, 11.66. Found: C, 59.84.; H, 6.06; N, 11.25.
Compound 2b
To a suspension
of NaH (60% in mineral oil, 34 mg, 0.86 mmol) in dry THF
(10 mL) under N2 was added a soln of 7 (103
mg, 0.43 mmol) in dry THF (2 mL). After the mixture was stirred
at r.t. for 30 min, CS2 (80 µL, 1.29 mmol) was added
and stirring continued for 1 h. Iodomethane (30 µL, 0.47
mmol) was then added. After stirring for another 0.5 h, the reaction
was quenched with sat. aq NaHCO3 soln and the mixture
was extracted with EtOAc. The combined organic layers were dried
(Na2SO4), filtered, and concentrated. The residue
was chromatographed (EtOAc-PE, 1:10) to afford the xanthates
(138 mg, 97%) as a colorless oil. To a solution of above-mentioned
xanthates (138 mg, 0.42 mmol) in anhyd toluene (36 mL) were added n-Bu3SnH (97%, 0.14 mL,
0.50 mmol) and AIBN (14 mg, 0.08 mmol). The mixture was stirred
at reflux overnight, cooled to r.t., concentrated, diluted with
sat. aq NaHCO3 soln, and extracted with EtOAc. The combined
organic extracts were dried (Na2SO4), filtered,
and concentrated. The residue was chromatographed (EtOAc-PE,
1:1) to afford 2b (74 mg, 79%)
as a colorless oil. ¹H NMR (300 MHz, CDCl3): δ = 1.79-2.23
(m, 2 H), 2.29-2.41 (m, 1 H), 2.32 (s, 3 H), 2.96-3.13
(m, 2 H), 3.23-3.34 (m, 2 H), 3.60 (dd, J = 33.9,
15.0 Hz, 1 H), 7.21 (dd, J = 7.2,
4.8 Hz, 1 H), 7.49 (d, J = 7.2
Hz, 1 H), 8.49 (d, J = 4.8
Hz, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 25.3
(t, J = 6.0
Hz), 38.4 (t, J = 26.4
Hz), 40.0, 45.0 (dd, J = 26.1,
26.1 Hz), 56.0, 67.3 (d, J = 7.4
Hz), 121.8, 125.9 (dd, J = 244.9,
205.7 Hz), 130.2, 136.4, 148.6, 153.7 (d, J = 11.2
Hz). ¹9F NMR (282 MHz, CDCl3): δ = -101.41
(d, J = 242.4
Hz, 1 F), -90.0 (dm, J = 242.4
Hz, 1 F). ESI-MS: 225.2 [M + H]. HRMS
(EI): m/z calcd for C12H14N2F2: 224.1125;
found: 224.1118.