Subscribe to RSS
DOI: 10.1055/s-0029-1217520
Scope and Limitations of Samarium Diiodide Induced Cyclizations of Alkenyl-Substituted γ-Keto Esters to Benzannulated Cyclooctanol Derivatives
Publication History
Publication Date:
01 July 2009 (online)
Abstract
A series of γ-keto esters bearing various alkenyl substituents were synthesized and subjected to samarium diiodide mediated 8-endo-trig ketyl-alkene coupling reactions. Highly substituted benzannulated cyclooctanol derivatives were obtained in good yields and with moderate to excellent stereoselectivities. The obtained results demonstrate the influence of steric and electronic factors on the regio- and stereoselectivity of ketyl-alkene cyclizations. Stilbenyl-substituted derivatives can cyclize either to cyclooctanol or to cycloheptanol derivatives depending on the substitution pattern at the carbonyl group.
Key words
samarium diiodide - ketyl - cyclizations - radical reactions - medium-sized rings - cyclooctanols - cycloheptanols
- Selected reviews:
-
1a
Petasis NA.Patane MA. Tetrahedron 1992, 48: 5757 -
1b
Mehta G.Singh V. Chem. Rev. 1999, 99: 881 - 2
Namy JL.Girard P.Kagan HB. New J. Chem. 1977, 1: 5 - Reviews:
-
3a
Gopalaiah K.Kagan HB. New J. Chem. 2008, 32: 607 -
3b
Ebran J.-P.Jensen CM.Johannesen SA.Karaffa J.Lindsay KB.Taaning R.Skrydstrup T. Org. Biomol. Chem. 2006, 4: 3553 -
3c
Concellon JM.Rodriguez-Solla H. Eur. J. Org. Chem. 2006, 1613 -
3d
Jung DY.Kim YH. Synlett 2005, 3019 -
3e
Edmonds DJ.Johnston D.Procter D.-J. Chem. Rev. 2004, 104: 3371 -
3f
Berndt M.Gross S.Hölemann A.Reissig H.-U. Synlett 2004, 422 -
3g
Kagan HB. Tetrahedron 2003, 59: 10351 -
3h
Steel PG. J. Chem. Soc., Perkin Trans. 1 2001, 2727 -
3i
Krief A.Laval A.-M. Chem. Rev. 1999, 99: 745 -
3j
Kagan HB.Namy JL. Top. Organomet. Chem. 1999, 2: 155 -
3k
Molander GA.Harris CR. Tetrahedron 1998, 54: 3321 -
3l
Molander GA.Harris CR. Chem. Rev. 1996, 96: 307 -
4a
Inanaga J.Yokoyama Y.Hanada Y.Yamaguchi M. Tetrahedron Lett. 1991, 32: 6371 -
4b
Matsuda F.Sakai T.Okada N.Miyashita M. Tetrahedron Lett. 1998, 39: 863 -
4c
Tamiya H.Goto K.Matsuda F. Org. Lett. 2004, 6: 545 -
4d
Molander GA.McKie JA. J. Org. Chem. 1994, 59: 3186 -
5a
Molander GA.Alonso-Alija C. J. Org. Chem. 1998, 63: 4366 -
5b
Molander GA.Machrouhi F. J. Org. Chem. 1999, 64: 4119 -
5c
Molander GA.Koellner C. J. Org. Chem. 2000, 65: 8333 -
5d
Molander GA.Brown GA.Storch de Gracia I. J. Org. Chem. 2002, 67: 3459 -
5e
Molander GA.Le Huerou Y.Brown GA. J. Org. Chem. 2001, 66: 4511 -
6a
Khan FA.Czerwonka R.Zimmer R.Reissig H.-U. Synlett 1997, 995 -
6b
Reissig H.-U.Khan FA.Czerwonka R.Dinesh CU.Shaikh AL.Zimmer R. Eur. J. Org. Chem. 2006, 4419 -
6c
Nandanan E.Dinesh CU.Reissig H.-U. Tetrahedron 2000, 56: 4267 -
7a
Kunkel E.Reichelt I.Reissig H.-U. Liebigs Ann. Chem. 1984, 512 -
7b For a general review, see:
Reissig H.-U.Zimmer R. Chem. Rev. 2003, 103: 1151 -
8a
Suzuki A. J. Organomet. Chem. 1999, 576: 147 -
8b
Molander GA.Rivero MR. Org. Lett. 2002, 4: 107 -
8c
Molander GA.Bernardi CR. J. Org. Chem. 2002, 67: 8424 -
8d
Yin L.Liebscher J. Chem. Rev. 2007, 107: 133 -
12a
Dinesh CU.Reissig H.-U. Angew. Chem. Int. Ed. 1999, 38: 789 ; Angew. Chem. 1999, 111, 874 -
12b
Berndt M.Reissig H.-U. Synlett 2001, 1290 -
12c
Gross S.Reissig H.-U. Synlett 2002, 2027 -
12d
Berndt M.Hlobilová I.Reissig H.-U. Org. Lett. 2004, 6: 957 -
12e
Aulenta F.Berndt M.Brüdgam I.Hartl H.Sörgel S.Reissig H.-U. Chem. Eur. J. 2007, 13: 6047 -
12f
Wefelscheid UK.Reissig H.-U. Adv. Synth. Catal. 2008, 350: 65 -
12g
Wefelscheid UK.Berndt M.Reissig H.-U. Eur. J. Org. Chem. 2008, 3635 -
12h
Kumaran RS.Reissig H.-U. Synlett 2008, 991 - For a recent study on the influence of HMPA on ketyl-alkene cyclizations, see:
-
13a
Sadasivam DV.Antharjanam PKS.Prasad E.Flowers RA. J. Am. Chem Soc. 2008, 130: 7228 -
13b
Flowers RA. Synlett 2008, 1427
References and Notes
Typical Procedure
for SmI
2
-Induced
Cyclizations - Conversion of 5 into 14 and 15
Samarium
metal (278 mg, 1.85 mmol) and 1,2-diiodoethane (477 mg, 1.69 mmol)
were placed under a flow of argon in a flame-dried, two-necked round-bottomed
flask containing a magnetic stirring bar and a septum inlet. THF
(20 mL) was added, and the mixture was vigorously stirred at r.t.
for 2 h. HMPA (2.40 mL, 13.8 mmol) was added to this solution of SmI2,
and after 10 min of stirring a solution of substrate 5 (200
mg, 0.77 mmol) and t-BuOH (146 µL,
1.54 mmol) in THF (31 mL) was added over 2 h. The mixture was stirred
at r.t. for 16 h and quenched with sat. aq NaHCO3 solution
(20 mL). The phases were separated and the aqueous layer was extracted
with Et2O (3 × 25 mL). The
combined organic layers were washed with H2O (10 mL)
and brine (10 mL) and dried (Na2SO4). The
products were purified by column chromatography (silica gel, hexane-EtOAc = 10:1)
to furnish 80 mg (40%) 14 as colorless
oil and 67 mg (38%) 15 as colorless
crystals (mp 130-132 ˚C).
Analytical Data for Methyl (6
RS
,8
RS
,10
RS
)-8-Hydroxy-8,10-dimethyl-5,6,7,8,9,10-hexahydrobenzo[8]-annulene-6-carboxylate
(14)
Compound 14 shows temperature-dependent
NMR spectra. At r.t. some signals appear broad, measurement at 55 ˚C allowed
to see the signals more clearly. ¹H NMR (500
MHz, CDCl3, 55 ˚C): δ = 1.20
(s, 3 H, 8-Me), 1.33 (dd, J = 11.5, 14.7
Hz, 1 H, 7-H), 1.33 (d, J = 7.1
Hz, 3 H, 10-Me), 1.62 (dd, J = 11.4,
14.3 Hz, 1 H, 9-H), 1.67 (dd, J = 3.8,
14.7 Hz, 1 H, 7-H), 1.79-1.83 (m, 1 H, 9-H), 3.10 (dddd, J = 2.9, 3.8, 7.5,
11.5 Hz, 1 H, 6-H), 3.16 (dd, J = 2.9,
13.9 Hz, 1 H, 5-H), 3.36-3.43 (m, 1 H, 10-H), 3.43 (dd, J = 7.5, 13.9
Hz, 1 H, 5-H), 3.68 (s, 3 H, CO2Me), 6.97-6.99,
7.06-7.10, 7.17-7.25 (3 m, 1 H, 1 H, 2 H, Ar)
ppm. The signal for the OH group could not be assigned unambiguously. ¹³C
NMR (125 MHz, CDCl3, 55 ˚C): δ = 23.2
(q, 10-Me), 30.2 (d, C-10), 32.3 (t,
C-5), 36.0 (q, 8-Me), 36.5 (t, C-7), 42.2 (d, C-6), 55.1 (t, C-9),
71.5 (s, C-8), 125.1, 125.9, 127.1, 129.6, 136.5, 146.3 (4 d, 2
s, Ar), 51.7, 176.1 (q, s, CO2Me) ppm. IR (neat): ν = 3500
(br, OH), 3100-2840 (=CH, CH), 1715 (C=O) cm-¹.
ESI-TOF: m/z calcd for: 217.1255 [M + H]+, 239.1074 [M + Na]+,
255.0813 [M + K]+;
found: 217.1267, 239.1095, 255.0844.
Analytical
Data for (2
RS
,5
SR
,7
SR
)-5,7-Dimethyl-1,5,6,7-tetrahydro-2,5-methano-4-benzoxonin-3
(2
H
)-one
(15)
¹H NMR (500 MHz, CDCl3): δ = 1.34
(d, J = 6.9
Hz, 3 H, 7-Me), 1.36 (s, 3 H, 5-Me), 1.43 (dd, J = 1.1,
13.9 Hz,1 H, 12-H), 1.55 (dd, J = 11.3,
14.6 Hz, 1 H, 6-H), 1.74-1.79 (m, 1 H, 12-H), 2.05-2.09
(m, 1 H, 6-H), 2.76 (dqd, J = 1.3,
6.9, 11.3 Hz, 1 H, 7-H), 3.15 (dddd, J = 1.1,
2.5, 10.3, 12.8 Hz, 1 H, 2-H), 3.20 (dd, J = 12.8,
14.5 Hz, 1 H, 1-H), 3.31 (dd, J = 2.5,
14.5 Hz, 1 H, 1-H), 7.00-7.02, 7.15-7.18, 7.28-7.36 (3
m, 1 H, 1 H, 2 H, Ar) ppm. ¹³C NMR
(125 MHz, CDCl3): δ = 22.5
(q, 7-Me), 29.6 (q, 5-Me), 30.0 (d, C-7),
34.2 (t, C-12), 34.5 (t, C-1), 39.3 (d, C-2), 51.4 (t, C-6), 86.3
(s, C-5), 125.4, 126.7, 127.9, 130.4, 136.8, 146.2 (4 d, 2 s, Ar),
181.5 (s, C-3) ppm. IR (KBr): ν = 3065-2825
(=CH, CH), 1755 (C=O) cm-¹.
Anal. Calcd for C15H18O2 (230.3):
C, 78.23; H, 7.88. Found: C, 78.49; H, 7.93.
In cis products the lactone bridge is formed under the reaction conditions due to the proximity of the hydroxy and methoxycarbonyl groups.
11The relative configurations of the 18b and 28 were unambiguously determined by the X-ray crystallography (Brüdgam, I.; Lentz, D. unpublished results, Freie Universität Berlin). For all other cyclization products the suggested relative configuratations are strongly supported by NOESY correlations.