Subscribe to RSS
DOI: 10.1055/s-0029-1217521
Stereoselective Construction of Steroidal Side Chain from 16-Dehydropregnenolone Acetate
Publication History
Publication Date:
01 July 2009 (online)
Abstract
Stereoselective construction of steroidal side chain at C-20 having ‘natural’ configuration using 16-dehydropregnalone acetate (16-DPA) as a starting material has been carried out. Palladium-catalyzed carbon-carbon bond-forming Heck reaction between C-20 vinyl iodide with methyl acrylate and transfer hydrogenation with triethylsilane and Pd/C are the key steps for stereoselective side-chain synthesis.
Key words
stereoselectivity - 16-dehydropregnenolone acetate - Heck coupling - transfer hydrogenation - steroidal side chain
-
1a For
a review on the construction of steroid side chain, see:
Piatak DM.Wicha J. Chem. Rev. 1978, 78: 199 -
1b
Redpath J.Zeelan F. Chem. Soc. Rev. 1983, 12: 75 -
2a
Ibuka T.Taga T.Shingu T.Saito M.Nishii S.Yamamoto Y. J. Org. Chem. 1988, 53: 3947 -
2b
He Z.Yi CS.Donaldson WA. Org. Lett. 2003, 5: 1567 ; and references cited therein -
2c
Harada S.Kiyono H.Nishio R.Tagushi T.Hanzawa Y. J. Org. Chem. 1997, 62: 3994 -
3a
Adam G.Marquardt V. Phytochemistry 1986, 25: 1787 -
3b
Lokhvich FA.Khripach VA.Zhabinskii VN. Russ. Chem. Rev. 1991, 60: 658 -
3c
Kovganko NV.Ananich SK. Chem. Nat. Compd. 2002, 38: 122 -
3d
Massey AP.Pore VS.Hazra BG. Synthesis 2003, 426 -
3e
Ramirez JA.Brosa C.Galagovsky LR. Phytochemistry 2005, 66: 581 -
4a
Brunel JM.Letourneux Y. Eur. J. Org. Chem. 2003, 3897 ; and references cited therein -
4b
Zhang DH.Cai F.Zhou X.-D.Zhou W.-S. Org. Lett. 2003, 5: 3257 -
4c
Okumura K.Nakamura Y.Takeuchi S.Kato I.Fujimoto Y.Ikekawa N. Chem. Pharm. Bull. 2003, 51: 1177 -
4d
Zhang D.-H.Cai F.Zhou X.-D.Zhou W.-S. Chin. J. Chem. 2005, 23: 176 - 5
Morzycki JW.Wojtkielewicz A. Phytochem. Rev. 2005, 4: 259 ; and references cited therein -
6a
Georghiou PE. Chem. Soc. Rev. 1977, 6: 83 -
6b
Taber DF.Jiang Q.Chen B.Zhang W.Campbell CL. J. Org. Chem. 2002, 67: 4821 -
6c
Gorobets E.Stepanenko V.Wicha J. Eur. J. Org. Chem. 2004, 783 -
7a
Nakanishi K. Pure Appl. Chem. 1971, 25: 167 -
7b
Kovganko NV.Kashkan ZhN.Chernov YG.Ananich SK.Sokolov SN.Survilo VL. Chem. Nat. Compd. 2003, 39: 411 -
8a
Burgoyne DL.Andersen RJ.Allen TM. J. Org. Chem. 1992, 57: 525 -
8b
Izzo I.Avallone E.Monica CD.Casapullo A.Amigo M.Riccardis D. Tetrahedron 2004, 60: 5587 -
9a
Nes WR.Mckean ML. Biochemistry of Steroids and other Isoprenoids University Park; Baltimore MD: 1977. -
9b
D’Aura MV.Minale L.Ricco R. Chem. Rev. 1993, 93: 1839 -
9c
Stonik VA. Russ. Chem. Rev. 2001, 70: 673 -
10a
Yu W.Jin Z. J. Am. Chem. Soc. 2001, 123: 3369 -
10b
Yu W.Jin Z. J. Am. Chem. Soc. 2002, 124: 6576 -
11a
Mandai T.Matsumoto T.Kawada M.Tsuji J. J. Org. Chem. 1992, 57: 6090 -
11b
Mandai T.Matsumoto T.Kawada M.Tsuji J. Tetrahedron 1999, 50: 475 -
12a
Kurek-Tyrlik A.Michalak K.Urbanczyk-Lipkowska Z.Wicha J. Tetrahedron Lett. 2004, 45: 7479 -
12b
Kurek-Tyrlik A.Michalak K.Wicha J. J. Org. Chem. 2005, 70: 8513 -
13a
Tanabe M.Hayashi K. J. Am. Chem. Soc. 1980, 102: 862 -
13b
Mikami K.Kawamoto K.Nakai T. Tetrahedron Lett. 1986, 27: 4899 -
14a
Yamamoto S.Watanabe B.Otsuki J.Nakagawa Y.Akamatsu M.Miyagawa H. Bioorg. Med. Chem. 2006, 14: 1761 -
14b
Houston TA.Tanaka Y.Koreeda M. J. Org. Chem. 1993, 58: 4287 -
14c
Hazra BG.Joshi PL.Pore VS. Tetrahedron Lett. 1990, 31: 6227 -
14d
Hazra BG.Pore VS.Joshi PL. J. Chem. Soc., Perkin Trans. 1 1993, 1819 -
14e
Hazra BG.Joshi PL.Bahule BB.Argade NP.Pore VS.Chordia MD. Tetrahedron 1994, 50: 2523 -
15a
Nakai T.Mikami K. Chem. Rev. 1986, 86: 885 -
15b
Castedo L.Granja JR.Mouriño A. Tetrahedron Lett. 1985, 26: 4959 -
16a
Shi B.Wu H.Yu B.Wu J. Angew. Chem. Int. Ed. 2004, 43: 4324 -
16b
Shi B.Tang P.Hu X.Liu JO.Yu B. J. Org. Chem. 2005, 70: 10354 - 17
Katoch R.Korde SS.Deodhar KD.Trivedi GK. Tetrahedron 1999, 55: 1741 -
18a
Temple JS.Riediker M.Schwartz J. J. Am. Chem. Soc. 1982, 104: 1310 -
18b
Harada S.Kiyono H.Nishio R.Taguchi T.Hanzawa Y.Shiro M. J. Org. Chem. 1997, 62: 3994 - 19
He Z.Yi CS.Donaldson WA. Org. Lett. 2003, 5: 1567 -
20a
DuBois GE. J. Org. Chem. 1982, 47: 5035 -
20b
Kametani T.Katoh T.Fujio J.Nogiwa I.Tsubuki M.Toshio Honda T. J. Org. Chem. 1988, 53: 1982 - 21
Fukumoto K.Suzuki K.Nemoto H.Kametani T.Furuyama H. Tetrahedron 1982, 38: 3701 -
22a
Kametani T.Masayoshi T.Nemoto H. Tetrahedron Lett. 1981, 22: 2373 -
22b
Kametani T.Suzuki K.Nemoto H. J. Org. Chem. 1982, 47: 2331 - 23
Jogireddy R.Rullkotter J.Christoffers J. Synlett 2007, 2847 -
24a
Shingate BB.Hazra BG.Pore VS.Gonnade RG.Bhadbhade MM. Chem. Commun. 2004, 2194 -
24b
Shingate BB.Hazra BG.Pore VS.Gonnade RG.Bhadbhade MM. Tetrahedron Lett. 2006, 47: 9343 -
24c
Shingate BB.Hazra BG.Pore VS.Gonnade RG.Bhadbhade MM. Tetrahedron 2007, 63: 5622 -
25a
Barton DHR.O’Brien RE.Sternhell S. J. Chem. Soc. 1962, 470 -
25b
Barton DHR.Bashiardes G.Fourrey J.-L. Tetrahedron Lett. 1983, 24: 1605 -
25c
Barton DHR.Bashiardes G.Fourrey J.-L. Tetrahedron 1988, 44: 147 - 26
Skoda-Földes R.Kollár L. Chem. Rev. 2003, 103: 4095 - 27
Skoda-Földes R.Bodnar M.Kollár L.Horvath J.Tuba Z. Steroids 1998, 63: 93 - 29
Mandal PK.McMurray JS. J. Org. Chem. 2007, 72: 6599 - 30
Vanderah DJ.Djerassi C. J. Org. Chem. 1978, 43: 1442
References and Notes
Methyl [20 (21),22]-3β-Acetoxychol-5-trienoate (10) To a solution of vinyl iodide 9 (0.234 g, 0.5 mmol) in dry DMF (10 mL), methyl acrylate (0.9 mL 1 mmol), Pd catalyst (0.005 g, 0.02 mmol), and K2CO3 (0.414 g, 1.5 mmol) were added, and the reaction mixture was stirred under argon at 25-28 ˚C for 12 h. Ice was added to the reaction mixture, and it was extracted with EtOAc (3 × 25 mL). The extract was washed 5% HCI (2 × 25 mL), sat. aq NaHCO3 (20 mL) and brine, and dried over Na2SO4. The product was purified by chromatography on silica gel (2% EtOAc-PE) to give pure product 10 (0.163 g) in 77% yield and starting material 9 (0.047 g). Colorless solid; mp 93-94 ˚C; [α]D ²6 -32.0 (c 2.58, CHCl3); IR (mull): 1691, 1724 cm-¹. ¹H NMR (200 MHz, CDCl3): δ = 0.56 (s, 3 H, 18-CH3), 1.02 (s, 3 H, 19-CH3), 2.04 (s, 3 H, OCOCH3), 3.76 (s, 3 H, COOCH3), 4.61 (m, 1 H, 3-CH), 5.34 (s, 1 H, 21-CH2), 5.38 (d, J = 5.0 Hz, 1 H, 6-CH), 5.55 (s, 1 H, 21-CH2), 6.02 (d, J = 16.0 Hz, 1 H, 23-CH), 7.36 (d, J = 16.0 Hz, 1 H, 22-CH). ¹³C NMR (50 MHz, CDCl3): δ = 12.8, 19.2, 20.9, 21.3, 24.2, 26.3, 27.6, 31.7, 32.3, 36.5, 36.9, 38.0, 38.6, 43.2, 50.0, 51.1, 51.5, 56.6, 73.8, 117.3, 122.0, 122.3, 139.6, 144.0, 149.1, 167.6, 170.4. Anal. Calcd for C27H38O4: C, 76.02; H, 8.98. Found: C, 75.79; H, 8.78. ESI-LCMS: m/z = 427.58 [M+ + 1].
31
Hydrogenation
of Compound 10
To a stirred solution of compound 10 (0.100 g 0.24 mmol) in MeOH (4 mL) 10% Pd/C
(0.015 g, 15% by weight) was added under an argon-filled
balloon. Neat TES (0.4 mL, 2.4 mmol) was added dropwise to the reaction
mixture. Within 10 min the reaction was complete. The reaction mixture
was filtered through Celite, and the solvent was removed under vacuum.
The product was purified by column chromatography on silica gel
(2% EtOAc-hexane) to furnish a mixture of compounds 11a,b and 12a,b (0.094 g). Catalytic
hydrogenation of this mixture (0.094 g) was carried out using 10% Pd/C
(0.009 g) at 3.1 bar, in 10 mL EtOAc at 30 ˚C for 10 h.
The reaction mixture was filtered through Celite, and the filtrate
was evaporated under reduced pressure to obtain diastereomeric mixture
of 12a/12b (0.091 g)
in 90% yield (Overall after 2 steps). Crystallization of
the crude product from 10 mL MeOH-CH2Cl2 (9:1)
gave major product C-20 (R)-ol, 12a (0.063 g) in 62% yield and
after several crystallization minor product C-20 (R)-ol 12b (0.008 g) in 8% yield.
Methyl (20
R
)-3β-Acetoxychol-5-en-24-oate (12a)
Colorless
solid; mp 160-162 ˚C; [α]D
²6 (CHCl3, c 2.0) -46.0. IR (mull): 1724
cm-¹. ¹H NMR (200
MHz, CDCl3): δ = 0.67 (s, 3 H, 18-CH3),
0.92 (d, J = 6.3
Hz, 3 H, 21-CH3), 1.01 (s, 3 H, 19-CH3), 2.03
(s, 3 H, OCOCH3), 3.66 (s, 3 H, COOCH3), 4.60
(m, 1 H, 3-CH), 5.36 (d, J = 5.0
Hz, 1 H, 6-CH). ¹³C NMR (50 MHz, CDCl3): δ = 11.8,
18.3, 19.3, 21.0, 21.4, 24.2, 27.7, 28.1, 31.0, 31.0, 31.8, 31.9,
35.3, 36.5, 37.0, 38.1, 39.7, 42.3, 50.0, 51.4, 55.7, 56.6, 73.9,
122.5, 139.6, 170.4, 174.7. Anal. Calcd for C27H42O4:
C, 75.31; H, 9.83. Found: C, 75.27; H, 9.71. ESI-LCMS: m/z = 431.62 [M+ + 1].
Crystallographic
Data for Compound 12a
Empirical formula: C27H42O4;
formula weight: 430.61, temp, 297 (2) K, wavelength, 0.71073 A;
crystal system; space group, monoclinic, P21; unit cell dimensions, a = 11.0178 (18)
A, α = 90˚, β = 7.4633
(13) A, β = 92.080 (3)˚, c = 14.950
(3) A, γ = 90˚; volume,
1228.5 (4) A³, Z; calcd density, 2, 1.164 mg/m³;
absorption coefficient, 0.076 mm-¹, F(000) 472; crystal size, 0.40 × 0.29 × 0.03
mm; θ range for data collection 1.36-25.99˚;
limiting indices, -13< = h< = 13, -9< = k< = 9, -18< = l < = 17,
reflections collected/unique 9650/4755 [R(int) = 0.0275];
completeness to θ = 25.99, 99.9%;
absorption correction, semi-empirical from equivalents; max. and
min. transmission 0.9977 and 0.9702; refinement method, full-matrix
least-squares on F²; data/restraints/ arameters,
4755/1/285; goodness-of-fit on F²,
1.182; final R indices [I > 2σ(I)] R1 = 0.0655, wR2 = 0.1285, R indices (all data), R1 = 0.0784, wR2 = 0.1346;
largest diff. peak and hole, 0.194 and -0.174 e A-³.
CCDC 725609 contains the supplementary crystallographic data for
this structure. These data can be obtained free of charge from the
Cambridge Crystallo-graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Methyl (20
S
)-3β-Acetoxychol-5-en-24-oate (12b)
Colorless solid; mp 120-121 ˚C. ¹H
NMR (200 MHz, CDCl3): δ = 0.69 (s,
3 H, 18-CH3), 0.85 (d, J = 4.0
Hz, 3 H, 21-CH3), 1.02 (s, 3 H, 19-CH3), 2.03
(s, 3 H, OCOCH3), 3.67 (s, 3 H, COOCH3), 4.63
(m, 1 H, 3-CH), 5.38 (d, J = 5.0
Hz, 1 H, 6-CH).