RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217532
Synthesis of the First Thiazolidine-Condensed Five-, Six-, and Seven-Membered Heterocycles via Cyclization of Vinylogous N-Acyliminium Ions
Publikationsverlauf
Publikationsdatum:
01. Juli 2009 (online)
Abstract
Synthesis of new thiazolidine-fused five-, six-, and seven-membered heterocycles through vinylogous N-acyliminium ion-cyclization sequence, involving positions 3 and 4 of the thiazolidine ring, is described. The formation of bicyclic products, arising by generally disfavored 5-endo-trig cyclization initiated by sulfur atom acting as a nucleophile, indicates the preparative value of this method.
Key words
neighboring-group effects - lactams - iminium ions - cyclization - fused-ring systems
-
1a
Schultz AG.Pettus L. J. Org. Chem. 1997, 62: 6855 -
1b
Pandey G.Das P.Reddy PY. Eur. J. Org. Chem. 2000, 657 -
2a
Pei X.-F.Greig NH.Flippen-Anderson JL.Bi S.Brossi A. Helv. Chim. Acta 1994, 77: 1412 -
2b
Ishibashi H.Kato I.Takeda Y.Tamura O. Tetrahedron Lett. 2001, 42: 931 -
3a
Fuji K.Kawabata T.Ohmori T.Shang M.Node M. Heterocycles 1998, 47: 951 -
3b
Forns P.Diez A.Rubiralta M. J. Org. Chem. 1996, 61: 7882 -
4a
Sun P.Sun C.Weinreb SM. J. Org. Chem. 2002, 67: 4337 -
4b
Chihab-Eddine A.Daïch A.Jilale A.Decroix B. Tetrahedron Lett. 2001, 42: 573 - For recent reviews on iminium ion cyclization, see:
-
5a
Royer J.Bonin M.Micouin L. Chem. Rev. 2004, 104: 2311 -
5b
Maryanoff BE.Zhang H.-C.Cohen JH.Turchi IJ.Maryanoff CA. Chem. Rev. 2004, 104: 1431 -
5c
Speckamp WN.Moolenaar MJ. Tetrahedron 2000, 56: 3817 -
6a
Hart DJ. J. Org. Chem. 1981, 46: 367 -
6b
Winterfeldt E. Synthesis 1975, 617 -
6c
Padwa A.Kappe CO.Cochran JE.Snyder JP. J. Org. Chem. 1997, 62: 2786 - 7
Marković R.Baranac M.Steel PJ.Kleinpeter E.Stojanović M. Heterocycles 2005, 65: 2635 -
8a
Marković R.D˛ambaski Z.Baranac M. Tetrahedron 2001, 57: 5833 -
8b
Marković R.Baranac M.D˛ambaski Z.Stojanović M.Steel PJ. Tetrahedron 2003, 59: 7803 -
9a
Pujari HK. Adv. Heterocycl. Chem. 1990, 49: 1 -
9b
Köpper S.Lindner K.Martens J. Tetrahedron 1992, 48: 10277 -
10a
Pinck LA.Hilbert GE. J. Am. Chem. Soc. 1946, 751 -
10b
McKillop A.Ford ME. Tetrahedron 1974, 30: 2467 -
10c
Stetter H.Schwarz M.Hirschhorn A. Chem. Ber. 1959, 92: 1629 - 11
Geluk HW.Schlatmann JLMA. Tetrahedron 1968, 24: 5361 - For this type of neighboring-group participation, see:
-
12a
Pasto DJ.Serve MP. J. Am. Chem. Soc. 1965, 87: 1515 -
12b
Cheng X.-E.Hui Y.-Z.Gu J.-H.Jiang X.-K. Chem. Commun. 1985, 71 -
12c
Bhatt MV.Rao GV.Rao KS. J. Org. Chem. 1979, 44: 984 -
12d
Irie T.Tanida H. J. Org. Chem. 1980, 45: 1759 -
12e
Holum JR.Jorenby D.Mattison P. J. Org. Chem. 1964, 29: 769 - 13
Zheng T.-C.Burkart M.Richardson DE. Tetrahedron Lett. 1999, 40: 603 - 14
Van Maarseveen JH.Scheeren HW.Kruse CG. Tetrahedron 1993, 49: 2325 - For recent examples of the 5-endo-trig mode ring-closing reaction, see:
-
17a
Fuwa H.Sasaki M. Org. Lett. 2007, 9: 3347 -
17b
Kim I.Won HK.Choi J.Lee GH. Tetrahedron 2007, 63: 12954 -
17c
Ray D.Paul S.Brahma S.Ray JK. Tetrahedron Lett. 2007, 48: 8005 -
17d
Bogen S.Goddard J.-P.Fensterbank L.Malacria M. ARKIVOC 2008, (viii): 126 -
17e
Ichikawa J.Iwai Y.Nadano R.Mori T.Ikeda M. Chem. Asian J. 2008, 3: 393 -
17f
Marchand P.Gulea M.Masson S.Saquet M.Collignon N. Org. Lett. 2000, 2: 3757 -
17g
Bommezijn S.Martin CG.Kennedy AR.Lizos D.Murphy JA. Org. Lett. 2001, 3: 3405 -
17h
Chowdhury MA.Reissig H.-U. Synlett 2006, 2383 -
17i
Clark AJ.Dell CP.McDonagh JM.Geden J.Mawdsley P. Org. Lett. 2003, 5: 2063 -
17j
Jones AD.Redfern AL.Knight DW.Morgan IR.Williams AC. Tetrahedron 2006, 62: 9247 -
17k
Clive DLJ.Yang W.MacDonald AC.Wang Z.Cantin M. J. Org. Chem. 2001, 66: 1996 -
17l
Geyer A.Moser F. Eur. J. Org. Chem. 2000, 1113 -
18a
Baldwin JE. Chem. Commun. 1976, 736 -
18b
Baldwin JE.Thomas RC.Kruse LI.Silberman L. J. Org. Chem. 1977, 42: 3846 - 19
Chatgilialoglu C.Ferreri C.Guerra M.Timokhin V.Froudakis G.Gimisis T. J. Am. Chem. Soc. 2002, 124: 10765
References and Notes
Typical Procedure for the Synthesis of ( Z )-Ethyl 2-(Tetrahydrothiazolo[4,3- b ][1,3]thiazin-6 (2 H )-ylidene)acetate (9f) The thioester 7f (50.5 mg, 0.17 mmol) was dissolved in dry EtOH (5 mL) and a solution of NaOEt (0.2 M in EtOH, 0.85 mL, 0.17 mmol) was added at r.t. with vigorous stirring. After hydrolysis to thiol, as evidenced by complete consumption of the reactant (ca. 15 min; TLC), the reaction mixture was cooled down to 0 ˚C. Twofold mass excess of NaBH4 (101 mg, 15-20 mmol equiv) was added, followed by 3 drops of 0.4 M HCl in EtOH. The addition of the same amount of acid was continued in regular 10 min intervals until the end of the reaction (45 min), when the reaction mixture was quenched with 1 M HCl in EtOH. The suspension was stirred for an additional 30 min at 0 ˚C, diluted with H2O, extracted with CHCl3, the organic phase separated, dried with Na2SO4, and the solvent evaporated under reduced pressure. Purification of a crude product by column chromatography (SiO2; PE-EtOAc solvent gradient 100:0 → 80:20) afforded the final product 9f as a white solid (27.4 mg, 66%); mp 108-109 ˚C. ¹H NMR (200 MHz, CDCl3): δ = 1.27 (3 H, t, J = 7.4 Hz, CH 3CH2), 1.65-2.05 (2 H, m, C3H2), 2.76-2.83 (1 H, m, C2H), 2.83 (1 H, dd, J 1 = 11.8 Hz, J 2 = 2.0 Hz, C8H), 3.12 (1 H, ddd, J 1 = 13.6 Hz, J 2 = 12.2 Hz, J 3 = 3.0 Hz, C2H), 3.27 (1 H, ddd, J 1 = 14.4 Hz, J 2 = 12.6 Hz, J 3 = 2.6 Hz, C4H), 3.39 (1 H, dd, J 1 = 11.8 Hz, J 2 = 7.2 Hz, C8H), 3.80-3.87 (1 H, m, C4H), 4.17 (2 H, q, J = 7.4 Hz), 5.05 (1 H, s, C6 ′H), 5.18 (1 H, dd, J 1 = 7.2 Hz, J 2 = 2.0, C8aH) ppm. ¹³C NMR (50.3 MHz, CDCl3): δ = 14.6 (CH3CH2), 22.0 (C3), 29.1 (C2), 33.0 (C8), 46.8 (C4), 59.3 (CH2CH3), 67.5 (C8a), 83.5 (C6 ′), 162.3 (C6), 168.9 (CO2) ppm. IR: 2977, 2951, 2925, 2897, 1662, 1531, 1459, 1427, 1335, 1276, 1226, 1205, 1177, 1144, 1102, 1043, 1003, 900, 809 cm-¹. HR MS (CI/TOF): m/z [M + H]+ calcd: 246.06170; found: 246.06176 ± 0.24 ppm.
16Analytical Data of (Z)-Ethyl
2-{7-Methyl-2H-thiazolo[4,3-b]thiazol-5 (3H,7H,7aH)-ylidene}acetate
(9c)
Isolated in 37% yield
as a mixture of trans- and cis-isomer in a 75:25 ratio.
Compound trans-9c: ¹H
NMR (500 MHz, CDCl3): δ = 1.26 (3 H,
t, J = 7.0
Hz, CH
3CH2), 1.49
(3 H, d, J = 6.5
Hz, CH
3CHS), 3.09-3.12
(1 H, m, CH2S), 3.15-3.20 (1 H, m, CH2S),
3.26-3.32 (1 H m, CH2N), 3.66 (1 H, dq, J
1 = 6.5
Hz, J
2 = 5.5 Hz, CHCH3S), 3.97 (1 H, ddd, J
1 = 9.0
Hz, J
2 = 6.0 Hz, J
3 = 3.0
Hz, CH2N) 4.16 (2 H, q, J = 7.0
Hz, CH
2CH3), 4.89
(1 H, d, J = 5.5
Hz, CHSN), 5.07 (1 H, s, = CH) ppm. ¹³C
NMR (50.3 MHz, CDCl3): δ = 14.5 (CH3CH2), 20.1 (CH3CHS), 32.0 (CH2S),
45.1 (CHCH3S), 50.7 (CH2N), 59.4
(CH2CH3), 76.8
(CHSN), 84.4 (=CH), 163.76 (C=), 168.6 (CO2)
ppm.
Compound cis-9c: ¹H NMR (500 MHz,
CDCl3): δ = 1.27 (3 H, t, J = 7.0 Hz,
CH
3CH2), 1.46 (3
H, d, J = 7.0
Hz, CH
3CHS), 3.05-3.09
(1 H, m, CH2S), 3.24-3.33 (1 H, m, CH2S),
3.29-3.41 (1 H, m, CH2N), 3.89 (1 H, dq, J
1 = 7.0 Hz, J
2 = 5.5
Hz, CHCH3S), 4.00 (1 H, ddd, J
1 = 9.2
Hz, J
2 = 5.8
Hz, J
3 = 3.2
Hz, CH2N) 4.16 (2 H, q, J = 7.0
Hz, CH2CH3), 5.10
(1 H, s, =CH), 5.28 (1 H, d, J = 5.5
Hz, CHSN) ppm. ¹³C NMR (50.3 MHz, CDCl3): δ = 14.5 (CH3CH2), 17.0 (CH3CHS), 31.0 (CH2S),
41.3 (CHCH3S), 51.0 (CH2N),
59.4 (CH2CH3),
76.8 (CHSN), 84.8 (=CH), 163.8 (C=), 168.6 ppm.