Subscribe to RSS
DOI: 10.1055/s-0029-1217534
Glycotriazolophane Synthesis via Click Chemistry
Publication History
Publication Date:
01 July 2009 (online)
Abstract
A glycotriazolophane (carbohydrate-triazole-cyclophane hybrid) has been synthesized from a sugar amino acid via copper-catalysed azide-alkyne cycloaddition.
Key words
cyclophane - carbohydrates - macrocycle - 1,2,3-triazole - azide-alkyne cycloaddition
-
1a
McGavin RS.Gagne RA.Chervenak MC.Bundle DR. Org. Biomol. Chem. 2005, 3: 2723 -
1b
Jaunzems J.Oelze B.Kirschning A. Org. Biomol. Chem. 2004, 2: 3448 - 2
Morales JC.Zurita D.Penadés S. J. Org. Chem. 1998, 63: 9212 -
3a
Szejtli J. Pure Appl. Chem. 2004, 76: 1825 -
3b
Muthana S.Yu H.Cao H.Cheng J.Chen X. J. Org. Chem. 2009, 74: 2928 -
3c
Velasco-Torrijos T.Murphy PV. Tetrahedron: Asymmetry 2005, 16: 261 -
3d
Bodine KD.Gin DY.Gin MS. Org. Lett. 2005, 7: 4479 -
3e
Bodine KD.Gin DY.Gin MS. J. Am. Chem. Soc. 2004, 126: 1638 -
4a
Chandrasekhar S.Rao CL.Nagesh C.Reddy CR.Sridhar B. Tetrahedron Lett. 2007, 48: 5869 -
4b
Velasco-Torrijos T.Murphy PV. Org. Lett. 2004, 6: 3961 - For recent reviews on saccharides as polyfunctional scaffolds, see:
-
5a
Velter I.La Ferla B.Nicotra F.
J. Carbohydr. Chem. 2006, 25: 97 -
5b
Meutermans W.Le GT.Becker B. ChemMedChem 2006, 1: 1164 -
5c
Murphy PV.Dunne JL. Curr. Org. Synth. 2006, 3: 403 - A triazacyclophane has been investigated in bioactive molecule development, see:
-
6a
Opatz T.Liskamp RMJ. Org. Lett. 2001, 3: 3499 -
6b
Monnee MCF.Brouwer AJ.Verbeek LM.van Wageningen AMA.Liskamp RMJ. Bioorg. Med. Chem. Lett. 2001, 11: 1521 - For selected publications on synthesis and applications of glycophanes, see:
-
7a
Bukownik RR.Wilcox CS. J. Org. Chem. 1988, 53: 463 -
7b
Jimenez-Barbero J.Junquera E.Martin-Pastor M.Sharma S.Vicent C.Penades S.
J. Am. Chem. Soc. 1995, 117: 11198 -
7c
Savage PB.William D.Dalley NK. J. Inclusion Phenom. Mol. Recognit. Chem. 1997, 29: 335 -
7d
Morales JC.Penades S. Angew. Chem. Int. Ed. 1998, 37: 654 -
7e
Belghiti T.Joly J.-P.Didierjean C.Dahaoui S.Chapleur Y. Tetrahedron Lett. 2002, 43: 1441 -
8a
Gruner SAW.Locardi E.Lohof E.Kessler H. Chem. Rev. 2002, 102: 491 -
8b
Schweizer F. Angew. Chem. Int. Ed. 2002, 41: 231 -
8c
Risseeuw MDP.Overhand M.Fleet GWJ.Simone MI. Tetrahedron: Asymmetry 2007, 18: 2001 - 9
Graf von Roedern E.Lohof E.Hessler G.Hoffmann M.Kessler H. J. Am. Chem. Soc. 1996, 118: 10156 - 10
Szabo L.Smith BL.McReynolds KD.Parrill AL.Morris ER.Gervay J. J. Org. Chem. 1998, 63: 1074 - 11
Tosin M.O’Brien C.Fitzpatrick GM.Müller-Bunz H.Glass WK.Murphy PV. J. Org. Chem. 2005, 70: 4096 - 12
Srinivasan M.Sankararaman S.Hopf H.Dix I.Jones PG. J. Org. Chem. 2001, 66: 4299 -
13a
Van der Eycken E.Sharpless K. QSAR Comb. Sci. 2007, 26: 1115 -
13b
Kolb HC.Finn MG.Sharpless KB. Angew. Chem. Int. Ed. 2001, 40: 2004 -
13c
Meldal M.Tornoe CW. Chem. Rev. 2008, 108: 2952 -
15a
Mohamadi F.Richards NGJ.Guida WC.Liskamp R.Lipton M.Caufield C.Chang G.Hendrickson T.Still WC. J. Comput. Chem. 1990, 11: 440 -
15b
Still WC.Tempczyk A.Hawley RC.Hendrickson T. J. Am. Chem. Soc. 1990, 112. 6127 - 16 For a recent application of cyclophanes,
see:
Yoon I.Benitez D.Zhao Y.-L.Miljanic OS.Kim S.-Y.Tkatchouk E.Leung KC.-F.Khan SI.Goddard WA.Stoddart JF. Chem. Eur. J. 2009, 15: 1115
References and Notes
Preparation of
3 and 5
To ice-cold 1 (0.95
g, 2.75 mmol) in CH2Cl2 (anhyd, 20 mL) was
added oxalyl chloride (0.25 mL, 3.03 mmol), followed by DMF (0.005
mL) under N2 and the mixture stirred for 0.5 h. p-Xylenediamine (0.169 mg, 1.24 mmol)
and DIPEA (0.48 mL, 2.75 mmol) were stirred together in the presence of
4 Å MS in CH2Cl2 (anhyd, 10 mL) until
complete dissolution of the amine. The solution containing the acid chloride
was added, and the mixture was stirred for a further 2 h at 0 ˚C.
The mixture was extracted with CH2Cl2 (20
mL), washed with NaHCO3 (2 × 15 mL), HCl (2 × 15
mL), brine (2 × 15 mL), H2O (2 × 15
mL), dried (Na2SO4), filtered, and the solvent
removed to give a pale brown foam. Silica gel chromatography (EtOAc-Cy,
gradient elution, 1:1 to 2:1) gave the protected diamide as a white
foam (0.359 g, 37%). This diamide (74.9 mg, 0.095 mmol)
was dissolved in MeOH-CH2Cl2 (3.5
mL, 6:1) to which was added NaOMe in MeOH (0.1 mL of 1.09 M) and
the mixture left to stir for 3 h at r.t. The solvent was removed
and the residue dissolved in H2O. Lyophilization gave 3 as an off-white powder (51 mg, quant.); [α]D -30.81
(c 0.37 g, H2O). ¹H
NMR (500 MHz, D2O): δ = 7.24 (s, 4
H, ArH), 4.73 (d, J = 8.8
Hz, 2 H, H-1), 4.37 (s, 4 H, PhCH2), 3.93 (d, J = 9.3 Hz,
2 H, H-5), 3.55-3.46 (m, 4 H, overlapping of H-3, H-4),
3.25 (m, 2 H, H-2). ¹³C NMR (125 MHz,
CDCl3): δ = 170.2 (CONH), 136.9 (ArC),
127.7 (CH), 90.4, 77.1, 75.6, 72.6, 71.3 (each CH), 42.7 (NHCH2Ph).
LRMS: m/z found: 561.1 [M + Na]+, 537.2 [M - H]-.
HRMS (ES): m/z calcd for C20H27O10N8: 539.1850;
found: 539.1865 [M + H]+.
The
bisazide 3 (60 mg, 0.111 mmol) was dissolved
in a solution of MeCN-H2O (1:1, 4.5 mL) to which
was added alkyne 4 (20 mg, 0.111 mmol)
and the reactants stirred before the addition of sodium ascorbate
(2 mg, 0.011 mmol) followed by CuSO4˙5H2O
(0.55 mL of a 0.01 M solution, 0.0055 mmol) and then stirred for
a further 13 h. The resulting precipitate was 5 (45
mg, 56%). ¹H NMR (300 MHz, DMSO-HOD,
9:1): δ = 8.38 (s, 2 H, C=CHN), 7.13 (s,
4 H, ArH), 6.95 (s, 4 H, ArH), 5.58 (d, J = 9.3
Hz, 2 H, H-1), 5.04 (s, 4 H, PhOCH2), 4.20 (s, 4 H, PhCH2),
3.92 (d, J = 9.7
Hz, 2 H, H-5), 3.85 (dd, J = 9.9,
8.1 Hz, 2 H, H-2), 3.55-3.51 (m, 2 H, H-4), 3.41 (dd, J = 9.5, 8.7
Hz, 2 H, H-2). LRMS: m/z found:
747.1 [M + Na]+,
723.2 [M - H]-. HRMS
(ES): m/z calcd for C32H37O12N8:
725.2531; found: 725.2549 [M + H]+.