Synlett 2009(12): 1959-1963  
DOI: 10.1055/s-0029-1217541
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Highly Diastereoselective 1,3-Dipolar Cycloaddition of a d-Galactose-Derived Nitrone with Dimethyl Maleate: Synthesis of Polyhydroxylated Perhydroaza­azulenes

Omprakash P. Bandea, Vrushali H. Jadhava, Vedavati G. Puranikb, Dilip D. Dhavale*a
a Garware Research Centre, Department of Chemistry, University of Pune, Pune 411 007, India
Fax: +91(20)25691728; e-Mail: ddd@chem.unipune.ernet.in;
b Center for Materials Characterization, National Chemical Laboratory, Pune 411 008, India
Further Information

Publication History

Received 26 February 2009
Publication Date:
03 July 2009 (online)

Abstract

An intermolecular 1,3-dipolar cycloaddition of a d-­galactose-derived nitrone with dimethyl maleate was found to be perfectly diastereoselective at the nitrone carbon to give exclusive formation of isoxazolidine. The N-O bond reductive cleavage in isoxazolidine followed by lactam reduction afforded a pyrrolidine ring skeleton with sugar appendage that on acetonide cleavage and reductive amino-cyclization gave hitherto unknown hydroxy­methyl-substituted hexa- and pentahydroxy perhydroazaazulenes.

    References and Notes

  • 1a Pellissier H. Tetrahedron  2007,  63:  3235 
  • 1b Ruck-Braun K. Tonia HE. Wierschem F. Chem. Soc. Rev.  2005,  34:  507 
  • 1c Gothelf KV. Jorgensen KA. Chem. Rev.  1998,  98:  863 
  • 1d Confalone PN. Huie EM. Org. React.  1988,  36:  1 
  • 1e Torseel KBG. Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis   Feuer H. VCH; Weinheim: 1988. 
  • 1f Ferrier RJ. Middleton S. Chem. Rev.  1993,  93:  2779 
  • 1g Osborn HM. Gemmell N. Harwood LM. J. Chem Soc., Perkin Trans. 1  2002,  2419 
  • 1h Frederickson M. Tetrahedron  1997,  53:  403 
  • 1i Adams JP. Box DS. J. Chem. Soc., Perkin Trans. 1  1999,  749 
  • 1j Karlsson S. Hogberg HE. Org. Prep. Proced. Int.  2001,  33:  103 
  • 1k Koumbis AE. Gallos JK. Curr. Org. Chem.  2003,  7:  585 
  • 1l STD#§l)Padwa A. Pearson WH. J. Nat. Prod.  2004,  67:  1074 
  • 1m Padwa A. Pearson WH. Org. Process Res. Dev.  2004,  8:  293 
  • 1n Padwa A. Pearson WH. J. Am. Chem. Soc.  2002,  124:  12633 
  • 1o Cycloaddition Reactions in Organic Synthesis   Vol. 8:  Carruthers W. Tetrahedron Organic Chemistry Series, Pergamon Press; New York: 1990.  p.269 
  • 1p Advances in Cycloaddition   Vol. 1:  Curran DP. JAI Press; London: 1988. 
  • 1q Advances in Cycloaddition   Vol. 2:  Curran DP. JAI Press; London: 1990. 
  • 1r Advances in Cycloaddition   Vol. 3:  Curran DP. JAI Press; London: 1993. 
  • 1s Gothelf KV. In Cycloaddition Reactions in Organic Synthesis   Kobayashi S. Jorgensen KA. Wiley-VCH; Weinheim: 2002.  Chap. 6. p.211 
  • 1t Kanemasa S. In Cycloaddition Reactions in Organic Synthesis   Kobayashi S. Jorgensen KA. Wiley-VCH; Weinheim: 2002.  Chap. 7. p.249 
  • 1u Kanemasa S. Nishiuchi M. Kamimura A. Hori K. J. Am. Chem. Soc.  1994,  116:  2324 
  • 1v Singh R. Singh S. Bhella AK. Sexana M. Faruk AS. Ishar MPS. Tetrahedron  2007,  63:  2283 
  • 1w Merino P. Tejero T. Laguna M. Cerrada E. Moreno A. Lopez JA. Org. Biomol. Chem.  2003,  1:  2336 
  • 1x Kumar KRR. Mallesha H. Rangappa KS. Synth. Commun.  2003,  33:  1545 
  • 1y Ding X. Taniguchi K. Ukaji Y. Inomata K. Chem. Lett.  2001,  5:  468 
  • 1z Ooi H. Urushibara A. Esumi T. Iwabuchi Y. Hatakeyama S. Org. Lett.  2001,  3:  953 
  • (aa) Romeo G. Iannazzoa D. Pipernoa A. Romeoa R. Corsarob A. Rescifinab A. Chiacchio U. Mini-Rev. Org. Chem.  2005,  2:  59 
  • 2a Merino P. Franco S. Merchan FL. Romero P. Tejero T. Uriel S. Tetrahedron: Asymmetry  2003,  14:  3731 
  • 2b Torres-Sanchez MI. Borrachero P. Cabrera-Escribano F. Gomez-Guillen M. Angulo-Alvarez M. Álvarez E. Favre S. Vogel P. Tetrahedron: Asymmetry  2007,  18:  1809 
  • 3a Karanjule NS. Markad SD. Sharma T. Sabharwal SG. Puranik VG. Dhavale DD. J. Org. Chem.  2005,  70:  1356 
  • 3b Bande OP. Jadhav VH. Puranik VG. Dhavale DD. Tetrahedron: Asymmetry  2007,  18:  1176 
  • 4a Elbein AD. Molyneux RJ. In Alkaloids: Chemical and Biological Perspectives   Vol. 5.:  Pelletier SW. Wiley-Interscience; New York: 1987. 
  • 4b Howard AS. Michael JP. In The Alkaloids   Vol. 28:  Brossi A. Academic Press; New York: 1986.  Chap. 3.
  • 4c Michael JP. Nat. Prod. Rep.  1990,  9:  485 
  • 5a Zho H. Hans S. Cheng X. Mootoo DR. J. Org. Chem.  2001,  66:  1761 
  • 5b Svansson L. Johnston BD. Gu J.-H. Patrik B. Pinto BM. J. Am. Chem. Soc.  2000,  122. 10769 
  • 5c Izquiedro I. Plaza MT. Robles R. Mota AJ. Tetrahedron: Asymmetry  1998,  9:  1015 
  • 5d Kang SH. Kim JS. Chem. Commun.  1998,  1353 
  • 5e Kefalas P. Grierson DS. Tetrahedron Lett.  1993,  34:  3555 
  • 5f Ina H. Kibayashi C. J. Org. Chem.  1993,  58:  52 
  • 5g Burgess K. Chaplin DA. Henderson I. Pan YT. Elbein AD. J. Org. Chem.  1992,  57:  1103 
  • 5h Furneaux RH. Mason JM. Tyler PC. Tetrahedron Lett.  1995,  36:  3055 
  • 6a Truscheit E. Frommer W. Junge B. Muller L. Schmidt DD. Wingender W. Angew. Chem., Int. Ed. Engl.  1981,  20:  744 
  • 6b Furneaux RH. Gainsford GJ. Mason JM. Tyler PC. Hartley O. Winchester BG. Tetrahedron  1997,  53:  245 
  • 7 Humphries MJ. Matsumoto K. White SL. Olden K. Cancer Res.  1986,  46:  5215 
  • 8a Karpas A. Fleet GWJ. Dwek RA. Petursson S. Namgoong SK. Ramsden NG. Jacob GS. Rademacher TW. Proc. Natl. Acad. Sci. U.S.A.  1988,  85:  9229 
  • 8b Walker BD. Kowalski M. Goh WC. Kozarsky K. Krieger M. Rosen C. Rohrschneider L. Haseltine WA. Sodroski J. Proc. Natl. Acad. Sci. U.S.A.  1987,  84:  8120 
  • 8c Sunkara PS. Bowling TL. Liu PS. Sjoerdsma A. Biochem. Biophys. Res. Commun.  1987,  148:  206 
  • 9 Johnson HA. Thomas NR. Bioorg. Med. Chem. Lett.  2002,  12:  237 
  • 10a Kajimoto T. Liu KKC. Pederson RL. Zhong Z. Ichikawa Y. Porco JA. Wong H. J. Am. Chem. Soc.  1991,  113:  6187 
  • 10b Asano N. Kato A. Miyauchi M. Kizu H. Kameda Y. Watson AA. Nash RJ. Fleet GWJ. J. Nat. Prod.  1998,  61:  625 
  • 10c Bols M. Lillelund VH. Jensen HH. Liang X. Chem. Rev.  2002,  102:  515 ; and references cited therein
  • 10d Stutz AE. Iminosugars as Glycosidase Inhibitors, Nojirimycin and Beyond   Wiley-VCH; Weinheim: 1999. 
  • 10e Heightman TD. Vasella AT. Angew. Chem. Int. Ed.  1999,  38:  750 
  • 10f Jenson HH. Bols M. Acc. Chem. Res.  2006,  39:  259 
  • 10g Ichikawa M. Igarashi Y. Ichikawa Y. Tetrahedron Lett.  1995,  36:  1767 
  • 10h Pandey G. Kapur M. Khan MI. Gaikwad SM. Org. Biomol. Chem.  2003,  1:  3321 
  • 10i Matin MM. Sharma T. Sabharwal SG. Dhavale DD. Org. Biomol. Chem.  2005,  3:  1702 
  • 11 Vyavahare VP. Chakraborty C. Maity B. Chattopadhyay S. Puranik VG. Dhavale DD. J. Med. Chem.  2007,  50:  5519 
  • 12a Markad SD. Karanjule NS. Sharma T. Sabharwal SG. Puranik VG. Dhavale DD. Org. Biomol. Chem.  2006,  4:  2549 
  • 12b Torres-Sanchez MI. Borrachero P. Cabrera-Escribano F. Gomez-Guillen M. Angulo-Alvarez M. Dianez MJ. Estrada MD. Lopez-Castro A. Perez-Garrido S. Tetrahedron: Asymmetry  2005,  16:  3897 
  • 12c Lindsay KB. Pyne SG. Tetrahedron  2004,  60:  4173 
  • 12d Tremmel P. Geyer A. J. Am. Chem. Soc.  2002,  124:  8548 
  • 12e Gavard O. Hersant Y. Alais J. Duverger V. Dilhas A. Bascou A. Bonnaffe D. Eur. J. Org. Chem.  2003,  3603 
  • 12f Geyer A. Bockelmann D. Weissenbach K. Fischer H. Tetrahedron Lett.  1999,  40:  477 
  • 12g Nath M. Mukhopadhyay R. Bhattacharjya A. Org. Lett.  2006,  8:  317 
  • 13a Karanjule NS. Markad SD. Dhavale DD. J. Org. Chem.  2006,  71:  6273 
  • 13b Dhavale DD. Markad SD. Karanjule NS. PrakashaReddy J. J. Org. Chem.  2004,  69:  4760 
  • 13c Patil NT. Tilekar JN. Dhavale DD. J. Org. Chem.  2001,  66:  1065 ; and references cited therein
  • 14a Goti A. Cacciarini M. Cardona F. Brandi A. Tetrahedron Lett.  1999,  40:  2853 
  • 14b Stafford JA. Tetrahedron Lett.  1995,  36:  681 
  • 14c Denmark SE. Hurd AR. J. Org. Chem.  2000,  65:  2875 
  • 14d Denmark SE. Seierstad M. Herbert B. J. Org. Chem.  1999,  64:  884 
  • 14e Cicchi S. Marradi M. Vogel P. Goti A. J. Org. Chem.  2006,  71:  1614 
  • 14f Closa M. Wightman RH. Synth. Commun.  1998,  28:  3443 
  • 14g Yu Y., Ohno M., Eguchi S., Kawai T., Terada Y.; Tetrahedron; 1997, 53: 5413
  • 14h Argyropoulos NG. Panagiotidis T. Coutouli-Argyropoulou E. Raptopoulou C. Tetrahedron  2007,  63:  321 
  • 15 Dondoni A. Franco S. Junquera F. Merchan F. Merino P. Tejero T. Synth. Commun.  1994,  22:  2537 
16

The ¹H NMR spectrum of crude compound obtained from evaporation of toluene, showed additional signals (<7%) corresponding to unreacted dimethyl maleate. However, no other signals corresponding to other diastereomers were detected.

17

All new compounds have been characterised by IR, ¹H NMR, ¹³C NMR, and elemental analysis. Selected Procedure and Analytical Data for Compound 5 A solution of nitrone 4 [¹4] (2.0 g, 5.5 mmol) and dimethyl maleate (2.3 g, 16.5 mmol) in toluene (20 mL) was stirred under nitrogen atmosphere at r.t. for 5 h. The reaction mixture was concentrated under reduced pressure and purified by column chromatography (n-hexane-EtOAc = 85:15) to afford cycloadduct as a white solid (2.5 g, 89%); mp 99-101 ˚C; R f = 0.7 (hexane-EtOAc = 6:4); [α]D ²5 -83.5 (c 0.3, CHCl3). IR (KBr): 1753, 1728, 1494
cm. ¹H NMR (300 MHz, CDCl3): δ = 1.22 (s, 3 H), 1.30 (s, 3 H), 1.35 (s, 3 H), 1.50 (s, 3 H), 3.62 (dd, J = 8.1, 1.5 Hz, 1 H), 3.96 (s, 3 H), 3.99 (s, 3 H), 3.93-4.30 (m, 2 H), 4.17 (d, J = 13.5 Hz, 1 H), 4.27 (dd, J = 4.8, 1.8 Hz, 1 H), 4.33 (dd, J = 7.8, 1.5 Hz, 1 H), 4.40 (d, J = 13.5 Hz, 1 H), 4.55 (dd, J = 7.8, 1.8 Hz, 1 H), 4.73 (d, J = 8.4 Hz, 1 H), 5.51 (d, J = 4.8 Hz, 1 H), 7.18-7.37 (m, 3 H) 7.38-7.47 (m, 2 H). ¹³C NMR (75 MHz, CDCl3): δ = 24.0, 24.8, 25.7, 26.1, 52.3, 52.4, 53.5, 61.9, 67.0, 67.5, 70.53, 70.59, 70.6, 78.9, 96.3, 108.4, 108.9, 127.0, 128.0 (s), 129.2 (s), 137.4, 169.4, 171.1. Anal. Calcd for C25H33NO10: C, 59.16; H, 6.55. Found: C, 59.29; H, 6.42.
Analytical Data for Compound 6
Viscous oil; 85%. R f = 0.5 (EtOAc); [α]D ²5 -69.77 (c 0.45, CHCl3). IR (neat): 3540-3200, 1734, 1687, 1438 cm. ¹H NMR (300 MHz, CDCl3 + D2O): δ = 1.20 (s, 3 H), 1.30 (s, 3 H), 1.40 (s, 3 H), 1.60 (s, 3 H), 3.45 (t, J = 5.7 Hz, 1 H), 3.63 (s, 3 H), 3.92-4.16 (m, 4 H), 4.28 (dd, J = 5.4, 2.1 Hz, 1 H), 4.37 (d, J = 5.7 Hz, 1 H), 4.53 (dd, J = 7.8, 2.1 Hz, 1 H), 5.21 (d, J = 15.6 Hz, 1 H), 5.56 (d, J = 5.4 Hz, 1 H), 7.10-7.40 (m, 5 H). ¹³C NMR (75 MHz, CDCl3): δ = 23.9, 24.5, 25.4, 26.1, 43.6, 47.1, 52.1, 57.4, 63.2, 70.2, 70.8, 70.9, 72.5, 96.4, 108.1, 109.2, 127.4, 127.5 (s), 128.6 (s), 134.9, 172.5, 172.7. Anal. Calcd for C24H31NO9: C, 60.37; H, 6.54. Found: C, 60.25; H, 6.40. Analytical Data for Compound 7
White solid; 67%; mp 138-140 ˚C; R f = 0.3 (EtOAc); [α]D ²5 -48.80 (c 0.25, CHCl3). IR (KBr): 3600-3250, 1632, 1454 cm. ¹H NMR (300 MHz, CDCl3 + D2O): δ = 1.38 (s, 6 H), 1.43 (s, 3 H), 1.46 (s, 3 H), 2.36 (dd, J = 9.9, 3.3 Hz, 1 H), 2.70-2.80 (m, 1 H), 2.82 (br d, J = 9.9, 1 H), 2.94 (t, J = 2.1 Hz, 1 H) 3.31 (t, J = 10.2 Hz, 1 H), 3.45 (d, J = 13.5 Hz, 1 H), 3.72 (dd, J = 10.2, 6.3 Hz, 1 H), 3.77 (d, J = 3.3 Hz, 1 H), 3.95 (br s, 1 H), 4.10 (d, J = 13.5 Hz, 1 H), 4.29-4.38 (m, 2 H), 4.64 (dd, J = 8.4, 2.4 Hz, 1 H), 5.64 (d, J = 5.1 Hz, 1 H), 7.15-7.40 (m, 5 H). ¹³C NMR (75 MHz, CDCl3): δ = 24.0, 24.9, 25.7, 26.2, 50.2, 58.5, 58.9, 64.5, 65.6, 67.3, 70.4, 71.0, 72.2, 72.9, 96.5, 108.6, 109.2, 126.7, 128.0 (s), 128.2 (s), 138.9. Anal. Calcd for C23H33NO7: C, 63.43; H, 7.64. Found: C, 63.57; H, 7.79.
Analytical Data for Compound 8
Viscous oil; 80%; R f = 0.4 (EtOAc); [α]D ²5 -63.76 (c 0.25, CHCl3). IR (neat): 3600- 3200, 1687, 1415 cm. ¹H NMR (300 MHz, CDCl3 + D2O): δ = 1.22 (s, 3 H), 1.28 (s, 3 H), 1.39 (s, 3 H), 1.44 (s, 3 H), 2.90 (t, J = 7.2 Hz, 1 H), 3.41 (t, J = 9.0 Hz, 1 H), 3.48-3.58 (m, 2 H), 3.63 (dd, J = 10.5, 6.6 Hz, 1 H), 3.97 (br s, 1 H), 4.03 (s, 1 H), 4.30 (dd, J = 4.8, 2.1 Hz, 1 H), 4.39 (d, J = 7.8 Hz, 1 H), 4.46 (s, 1 H), 4.60 (d, J = 7.8 Hz, 1 H), 5.07 (ABq, J = 12.6 Hz, 2 H), 5.54 (d, J = 4.8 Hz, 1 H), 7.18-7.40 (m, 5 H). ¹³C NMR (75 MHz, CDCl3): δ = 24.0, 25.0, 25.6, 25.7, 49.1, 55.0, 61.5, 63.3, 66.71, 66.78, 70.4, 70.8, 72.1, 72.2, 96.2, 109.3, 109.4, 127.5, 127.7 (s), 128.2 (s), 136.4, 155.3. Anal. Calcd for C24H31NO9: C, 60.37; H, 6.54. Found: C, 60.59; H, 6.32.
Analytical Data for Compound 3a
Viscous oil; 80%; R f = 0.25 (MeOH); [α]D ²5 +45.01 (c 0.25, MeOH). IR (neat): 3676-3250 cm. ¹H NMR (300 MHz, D2O): δ = 2.19 (m, 1 H), 2.81 (dd, J = 9.9, 2.7 Hz, 1 H), 3.13 (t, J = 9.0 Hz, 1 H), 3.27 (dd, J = 9.0, 6.9 Hz, 1 H), 3.61-3.78 (m, 2 H), 3.93 (dd, J = 9.9, 4.5 Hz, 1 H), 4.09 (d, J = 4.5 Hz, 1 H), 4.18-4.28 (m, 3 H), 4.94 (d, J = 6.0 Hz, 1 H). ¹³C NMR (75 MHz, D2O): δ = 53.8, 55.7, 60.1, 62.9, 66.9, 72.5, 75.6, 79.3, 84.6, 88.6. Anal. Calcd for C10H19NO7: C, 45.29; H, 7.22. Found: C, 49.31; H, 7.30.
Analytical Data for Compound 3b
Viscous oil; 92%. R f = 0.30 (MeOH). [α]D ²5 -3.0 (c 0.5, MeOH). IR (neat): 3670-3260 cm. ¹H NMR (300 MHz, D2O): δ = 2.51 (br d, J = 5.4 Hz, 1 H), 3.02 (br s, 1 H), 3.15 (br s 1 H), 3.35 (br s, 1 H), 3.53 (br d, J = 11.1 Hz, 1 H), 3.61 (dd, J = 11.7, 7.2 Hz, 1 H), 3.70-3.85 (m, 2 H), 3.86-4.06 (m, 2 H), 4.11 (d, J = 7.2 Hz, 1 H), 4.29 (br d, J = 5.4 Hz, 1 H), 4.39 (s, 1 H). ¹³C NMR (75 MHz, D2O): δ = 49.0, 55.3, 61.6 (s), 63.5, 66.8, 69.3, 71.3, 73.0, 74.2. Anal. Calcd for C10H19NO6: C, 48.19; H, 7.68. Found: C, 48.30; H, 7.91.