Subscribe to RSS
DOI: 10.1055/s-0029-1217560
Tandem Azide-Alkyne 1,3-Dipolar Cycloaddition/Electrophilic Addition: A Concise Three-Component Route to 4,5-Disubstituted Triazolyl-Nucleosides
Publication History
Publication Date:
15 July 2009 (online)
Abstract
A one-pot, three-component approach to a new family of 4,5-functionalized triazolyl-nucleosides is described. The method relies on the one-pot azide-alkyne 1,3-cycloaddition/electrophilic addition tandem reaction, which affords good yields of the corresponding 4,5-disubstituted nucleosides.
Key words
click - 3CR - tandem reaction - nucleosides
-
2a
Simons C.Wu Q.Htar TT. Curr. Top. Med. Chem. 2005, 5: 1191 -
2b Book review:
Recent Advances in Nucleosides: Chemistry
and Chemotherapy
Chu CK. Elsevier; Amsterdam: 2002. -
2c
Wagner CR.Iyer VV.McIntee E. J. Med. Res. Rev. 2000, 417 -
3a
Kool ET. Acc. Chem. Res. 2002, 35: 936 -
3b
Guianvarc’h D.Fourrey J.-L.Maurisse R.Sun J.-S.Benhida R. Org. Lett. 2002, 4: 4209 -
3c
Guianvarc’h D.Fourrey J.-L.Sun J.-S.Maurisse R.Benhida R. Bioorg. Med. Chem. 2003, 11: 2751 -
3d
Leconte AM.Matsuda S.Hwang GT.Romesberg FE. Angew. Chem. Int. Ed. 2006, 45: 4326 -
3e
Zahn A.Leumann CJ. Chem. Eur. J. 2008, 14: 1087 -
3f
Vrábel M.Horáková P.Pivonková H.Kalachova L.Cernocká H.Cahová H.Pohl R.Sebest P.Havran L.Hocek M.Fojtzz M. Chem. Eur. J. 2009, 15: 1144 -
3g
Grigorenko NA.Leumann CJ. Chem. Eur. J. 2009, 15: 639 -
3h
Ober M.Müller H.Pieck C.Gierlich J.Carell T. J. Am. Chem. Soc. 2005, 127: 18143 -
3i
Seela F.Peng X.Li H. J. Am. Chem. Soc. 2005, 127: 7739 -
3j
Seela F.Chittepu P. J. Org. Chem. 2007, 72: 4358 -
3k
Schwögler A.Carell T. Org. Lett. 2000, 2: 1415 -
3l
Clever GH.Kaul C.Carell T. Angew. Chem. Int. Ed. 2007, 46: 6226 -
3m
Böge N.Jacobsen MI.Szombati Z.Baerns S.Di Pasquale F.Marx A.Meier C. Chem. Eur. J. 2008, 14: 11194 -
3n
Chandra M.Keller S.Gloeckner C.Bornemann B.Marx A. Chem. Eur. J. 2007, 13: 3558 -
4a
De Clercq E.Holy A. Nat. Rev. Drug Discov. 2005, 4: 928 -
4b
De Clercq E. Antivir. Res. 2005, 67: 56 -
5a For
the use of Eicar, Ribavirin and Mizoribine as Inosine Monophosphate
Dehydrogenase (IMPDH) inhibitors, see:
Moya J.Pizarro H.Jashés M.De Clercq E.Sandino AM. Antivir. Res. 2000, 48: 125; -
5b
Shu Q.Nair V. Med. Res. Rev. 2008, 28: 219 -
5c
Barnard DL.Day CW.Bailey K.Heiner M.Montgomery R.Lauridsen L.Winslow S.Hoopes J.Li JK.Carson DA.Cottam HB.Sidwell RW. Antivir. Res. 2006, 71: 53 -
6a
Suwa A.Hirakata M.Kaneko Y.Sato S.Suzuki Y.Huwana M. Clin. Rheumatol. 2009, 28: 227 -
6b
Yokota S. Pediatr. Int. 2002, 44: 196 -
7a
Broggi J.Kumamoto H.Berteina-Raboin S.Nolan SP.Agrofoglio LA. Eur. J. Org. Chem. 2009, 1880 -
7b
Pradere U.Roy V.McBrayer TR.Schinazi RF.Agrofolio LA. Tetrahedron 2008, 64: 9044 -
7c
Joubert N.Shinazi RF.Agrofoglio LA. Tetrahedron 2005, 61: 11744 -
8a
Zhu R.Wang M.Xia Y.Qu F.Neyts J.Peng L. Bioorg. Med. Chem. Lett. 2008, 18: 3321 -
8b
Li W.Xia Y.Fan Z.Qu F.Wu Q.Peng L. Tetrahedron Lett. 2008, 49: 2804 -
8c
Xia Y.Li W.Qu F.Fan Z.Liu X.Berro C.Rauzy E.Peng L. Org. Biomol. Chem. 2007, 5: 1695 - 9
Ackermann L.Potukichi HK.Landsberg D.Vicente R. Org. Lett. 2008, 10: 3081 - 10
Li L.Zhang G.Zhu A.Zhang L. J. Org. Chem. 2008, 73: 3630 -
11a
El Akri K.Bougrin K.Balzarini J.Faraj A.Benhida R. Bioorg. Med. Chem. Lett. 2007, 17: 6656 -
11b
Guezguez R.Bougrin K.El Akri K.Benhida R. Tetrahedron Lett. 2006, 47: 4807 -
12a
Peyron C.Benhida R.Bories C.Loiseau P. Bioorg. Chem. 2005, 33: 439 -
12b
Spadafora M.Burger A.Benhida R. Synlett 2008, 1225 -
12c
Spadafora M.Mehiri M.Burger A.Benhida R. Tetrahedron Lett. 2008, 49: 3967 -
12d
Peyron C.Benhida R. Synlett 2009, 3: 472 -
13a
Tornoe CW.Christensen C.Meldal MJ. J. Org. Chem. 2002, 67: 3057 -
13b
Rostovtsev VV.Gree LG.Fokin VV.Sharpless KB. Angew. Chem. Int. Ed. 2002, 41: 2596 - 14 For mechanistic studies on the Cu-catalyzed
alkyne-azide 1,3-dipolar cycloaddition, see:
Himo F.Locell T.Hilgtaf R.Rostovtsev VV.Noodleman L.Sharpless KB.Fokin VV. J. Am. Chem. Soc. 2005, 127: 210 -
16a
Benhida R.Blanchard P.Fourrey J.-L. Tetrahedron Lett. 1998, 39: 6849 -
16b
Wirth T.Hirt UH. Synthesis 1999, 1271 -
16c
Zhdankin VV.Stang PJ. Chem. Rev. 2002, 102: 2523 -
16d
Wirth T. Top. Curr. Chem. 2003, 224 - 17 With excess of I2 as
electrophile the reaction was sluggish when only one equivalent
of DIPEA was used
References and Notes
Present address: Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, Faculté des Sciences, Université Mohamed-V Rabat-Agdal, Morocco
152a: ¹H NMR (200 MHz, CDCl3): δ = 1.36 (t, J = 7.1 Hz, 3 H, CH3), 1.97 (s, 3 H, Ac), 2.07 (s, 6 H, Ac), 4.07 (dd, J = 12.3, 4.2 Hz, 1 H, H-5′), 4.25-4.50 (m, 4 H, H-4′, H-5′ and CH2 ester), 5.72 (t, J = 5.5 Hz, 1 H, H-3′), 6.07 (dd, J = 5.5, 3.1 Hz, 1 H, H-2′), 6.12 (d, J = 3.1 Hz, 1 H, H-1′). ¹³C NMR (50 MHz, CDCl3): δ = 14.2, 20.4, 20.5, 20.6, 61.6, 62.5, 70.9, 73.9, 81.5, 90.3, 142.2, 159.9, 169.2, 169.4, 170.4. HRMS (ESI): m/z [M+H]+ calcd for C16H21N3O9I: 526.0322; found: 526.0317.
18
Typical procedure: To
a solution of azido-sugar (1 mmol) in CH2Cl2 (10
mL) were successively added alkyne (1.1 equiv), electrophile (3
equiv), CuX (CuI, CuBr or CuCl, 1.1 equiv) and DIPEA (see Table
[¹]
and Table
[²]
). The reaction mixture
was stirred at r.t. until the reaction was complete as indicated
by TLC. The mixture was filtered through Celite and the solvent
was removed. The crude product was purified by flash silica gel
chromatography (cyclohexane-EtOAc, 9:1→1:1) to
afford the desired 1,4,5-trisubstituted triazoles.
Analytical
data for selected compounds:
2d: ¹H
NMR (200 MHz, CDCl3): δ = 1.28 (t, J = 7.1 Hz,
3 H, CH3), 1.97 (s, 3 H, Ac), 1.98
(s, 3 H, Ac), 2.04 (s, 3 H, Ac), 4.05 (dd, J = 13.1,
5.1 Hz, 1 H, H-5′), 4.25-4.40 (m, 4 H,
H-4′, H-5′ and CH2 ester), 5.72 (t, J = 5.5 Hz,
1 H, H-3′), 5.88 (dd, J = 5.2,
3.0 Hz, 1 H, H-2′), 6.27 (d, J = 3.0
Hz, 1 H, H-1′), 7.17-7.25 (m, 3 H,
H-Ar), 7.31-7.40 (m, 2 H, H-Ar).
¹³C
NMR (50 MHz, CDCl3): δ = 14.3, 20.5,
20.6, 20.8, 61.7, 62.7, 71.0, 74.3, 81.2, 88.9, 128.3, 128.7, 129.9,
132.6, 136.8, 160.3, 169.2, 169.5, 170.7, 172.0. HRMS (ESI):
m/z [M + H]+ calcd
for C22H26N3O9Se: 556.0834;
found: 526.0829.
2e: ¹H
NMR (200 MHz, CDCl3): δ = 0.93 (t, J = 7.1 Hz,
3 H, CH3), 1.96 (s, 3 H, Ac), 2.02
(s, 3 H, Ac), 2.03 (s, 3 H, Ac), 2.37 (s, 3 H,
CH3Ph), 3.99 (dd, J = 12.3,
4.5 Hz, 1 H, H-5′), 4.07 (q, J = 7.1
Hz, 2 H, CH2 ester), 4.17 (dd, J = 12.3,
3.3 Hz, 1 H, H-5′), 4.31 (dd, J = 7.9,
4.5 Hz, 1 H, H-4′), 5.59 (t, J = 4.7
Hz, 1 H, H-3′), 6.07 (m, 2 H, H-1′ and
H-2′), 7.23 (d, J = 8.1
Hz, 2 H, H-Ar), 7.59 (d, J = 8.1
Hz, 2 H, H-Ar). ¹³C NMR (50
MHz, CDCl3): δ = 13.6, 20.3, 20.4,
20.6, 21.9, 61.6, 62.5, 70.8, 73.7, 81.7, 89.4, 129.7, 133.7, 137.6,
138.8, 146.5, 159.4, 169.1, 169.4, 170.4, 185.4. HRMS (ESI):
m/z [M + H]+ calcd
for C24H28N3O10: 518.1775;
found: 518.1781.
2h: ¹H
NMR (200 MHz, CDCl3): δ = 3.86 (s,
3 H, OCH3), 4.61 (dd, J = 12.2,
4.9 Hz, 1 H, H-5′), 4.78 (dd, J = 12.2,
3.7 Hz, 1 H, H-5′), 4.94 (dd, J = 10.9,
5.3 Hz, 1 H, H-4′), 6.35 (dd, J = 7.0,
5.1 Hz, 1 H, H-3′), 6.40 (d, J = 2.0
Hz, 1 H, H-1′), 6.50 (dd, J = 5.1,
2.0 Hz, 1 H, H-2′), 7.00 (d, J = 8.9
Hz, 2 H, H-Ar), 7.30-7.65 (m, 9 H, H-Ar),
7.85-8.10 (m, 8 H, H-Ar). ¹³C
NMR (50 MHz, CDCl3): δ = 55.4, 63.7,
71.9, 75.1, 81.2, 88.2, 114.3, 121.5, 128.1, 128.5, 128.6, 128.7, 130.0,
133.3, 133.7, 134.0, 142.3, 160.1, 165.2, 166.3.
MS (ES): m/z = 75.8 [M + Na].
To a solution of 2a (1
mmol) in toluene (10 mL) were successively added 2-(tributylstannyl)furan
(2 equiv), Pd(PPh3)2Cl2 (5 mol%),
CuI (5 mol%) and Et3N (1 equiv). The reaction
mixture was stirred for 30 min at 80 ˚C. After the
reaction was complete (¹H NMR monitoring), the mixture
was filtered through Celite and the solvent was removed. The crude
product was purified by flash silica gel chromatography (cyclohexane-EtOAc,
9:1→1:1) to afford the desired compound in 95% isolated
yield. ¹H NMR (200 MHz, CDCl3): δ = 1.37
(t, J = 7.1
Hz, 3 H, CH3), 2.00 (s, 3 H, Ac), 2.09
(s, 3 H, Ac), 2.10 (s, 3 H, Ac), 4.11 (dd, J = 12.1,
4.4 Hz, 1 H, H-5′), 4.30-4.50 (m, 4 H,
H-4′, H-5′ and CH2 ester), 5.82 (t, J = 6.2 Hz,
1 H, H-3′), 6.17 (dd, J = 5.2,
2.9 Hz, 1 H, H-2′), 6.39 (d, J = 2.9
Hz, 1 H, H-1′), 6.60 (dd, J = 3.4,
1.8 Hz, 1 H, H-furan), 7.45 (d, J = 3.4
Hz, 1 H, H-furan), 7.66 (d, J = 1.8
Hz, 1 H, H-furan). ¹³C NMR (50
MHz, CDCl3): δ = 14.4, 20.6, 20.8,
61.6, 62.9, 71.2, 74.4, 81.4, 89.7, 112.4, 117.6, 139.0, 145.3,
151.5, 157.9, 160.8, 169.4, 169.5, 170.7. HRMS (ESI): m/z [M + H]+
calcd
for C20H24N3O10: 466.1462;
found: 466.1456. This compound was then dissolved in MeOH (8 mL)
and the solution was saturated with ammonia at 0 ˚C
and stirred for 1 h at r.t. The crude product was evaporated and
purified by flash silica gel chromatography (CH2Cl2-MeOH,
9:1) to afford nucleoside 4 in 91% yield.
Free nucleoside 4: ¹H NMR
(200 MHz, CD3OD): δ = 3.60 (dd, J = 12.1,
5.6 Hz, 1 H, H-5′), 3.75 (dd, J = 12.2,
3.7 Hz, 1 H, H-5′), 3.88 (s, 3 H, OMe),
4.13 (dd, J = 9.2,
5.5 Hz, 1 H, H-4′), 4.51 (t, J = 5.4
Hz, 1 H, H-3′), 4.87 (t, J = 1.7
Hz, 1 H, H-2′), 6.17 (d, J = 2.9
Hz, 1 H, H-1′), 6.69 (dd, J = 3.4,
1.8 Hz, 1 H, H-furan), 7.36 (d, J = 3.4
Hz, 1 H, H-furan), 7.82 (d, J = 1.8 Hz,
1 H, H-furan). ¹³C NMR (50
MHz, CD3OD): δ = 52.6, 63.3, 72.2,
76.0, 87.3, 93.3, 113.0, 118.0, 139.8, 147.0, 159.0, 161.7, 162.2.
HRMS (ESI): m/z [M + Na]+ calcd
for C13H15N3O7Na: 348.0808;
found: 348.0807.
The Eicar analogue 5 was
prepared using standard Sonogashira coupling to give the protected
nucleoside intermediate: ¹H NMR (200 MHz, CDCl3): δ = 0.27
(s, 9 H, TMS), 1.37 (t, J = 7.2
Hz, 3 H, CH3), 2.02 (s, 3 H, Ac), 2.09 (s,
3 H, Ac), 2.10 (s, 3 H, Ac), 4.12 (dd, J = 12.9,
5.4 Hz, 1 H, H-5′), 4.32-4.52 (m, 4 H,
H-4, H-5′ and CH2 ester), 5.73 (t, J = 6.2 Hz,
1 H, H-3′), 5.90 (dd, J = 5.2,
2.8 Hz, 1 H, H-2′), 6.16 (d, J = 2.8
Hz, 1 H, H-1′). ¹³C
NMR (50 MHz, CDCl3): δ = -0.6,
14.3, 20.4, 20.5, 20.7, 61.5, 62.6, 70.7, 74.1, 81.1, 88.8, 113.6,
124.6, 140.6, 159.6, 169.2, 169.4, 170.6. HRMS (ESI): m/z [M + H]+ calcd
for C21H30N3O9Si: 496.1751;
found: 496.1746.
Methanolysis of this intermediate as described
above (MeOH, NH3, 48 h) led to the free nucleoside 5: ¹H NMR (200 MHz,
CD3OD): δ = 3.40 (s, 1 H,
H-alkyne), 3.60 (dd, J = 12.1,
5.7 Hz, 1 H, H-5′), 3.74 (dd, J = 12.1,
3.8 Hz, 1 H, H-5′), 4.11 (dd, J = 9.3,
5.4 Hz, 1 H, H-4′), 4.45 (t, J = 5.4 Hz,
1 H, H-3′), 4.75 (t, J = 3.4
Hz, 1 H, H-2′), 6.09 (d, J = 3.4
Hz, 1 H, H-1′). ¹³C
NMR (50 MHz, CD3OD): δ = 63.3, 72.2,
75.8, 87.4, 92.5, 94.5, 123.8, 144.3, 159.1, 163.3. HRMS (ESI): m/z [M + H]+ calcd
for C10H13N4O5: 269.0886; found:
269.0882.