Synlett 2009(13): 2123-2126  
DOI: 10.1055/s-0029-1217560
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Tandem Azide-Alkyne 1,3-Dipolar Cycloaddition/Electrophilic Addition: A Concise Three-Component Route to 4,5-Disubstituted Triazolyl-Nucleosides

Vincent Malnuit, Maria Duca, Anwar Manout, Khalid Bougrin, Rachid Benhida*
Laboratoire de Chimie des Molécules Bioactives et des Arômes, UMR 6001 CNRS, Institut de Chimie de Nice, Université de Nice-Sophia Antipolis (UNS), 28 Avenue de Valrose, 06108 Nice Cedex 2, France
Fax: +33(4)92076151; e-Mail: benhida@unice.fr;
Further Information

Publication History

Received 29 April 2009
Publication Date:
15 July 2009 (online)

Abstract

A one-pot, three-component approach to a new family of 4,5-functionalized triazolyl-nucleosides is described. The method relies on the one-pot azide-alkyne 1,3-cycloaddition/electrophilic addition tandem reaction, which affords good yields of the corresponding 4,5-disubstituted nucleosides.

    References and Notes

  • 2a Simons C. Wu Q. Htar TT. Curr. Top. Med. Chem.  2005,  5:  1191 
  • 2b Book review: Recent Advances in Nucleosides: Chemistry and Chemotherapy   Chu CK. Elsevier; Amsterdam: 2002. 
  • 2c Wagner CR. Iyer VV. McIntee E. J. Med. Res. Rev.  2000,  417 
  • 3a Kool ET. Acc. Chem. Res.  2002,  35:  936 
  • 3b Guianvarc’h D. Fourrey J.-L. Maurisse R. Sun J.-S. Benhida R. Org. Lett.  2002,  4:  4209 
  • 3c Guianvarc’h D. Fourrey J.-L. Sun J.-S. Maurisse R. Benhida R. Bioorg. Med. Chem.  2003,  11:  2751 
  • 3d Leconte AM. Matsuda S. Hwang GT. Romesberg FE. Angew. Chem. Int. Ed.  2006,  45:  4326 
  • 3e Zahn A. Leumann CJ. Chem. Eur. J.  2008,  14:  1087 
  • 3f Vrábel M. Horáková P. Pivonková H. Kalachova L. Cernocká H. Cahová H. Pohl R. Sebest P. Havran L. Hocek M. Fojtzz M. Chem. Eur. J.  2009,  15:  1144 
  • 3g Grigorenko NA. Leumann CJ. Chem. Eur. J.  2009,  15:  639 
  • 3h Ober M. Müller H. Pieck C. Gierlich J. Carell T. J. Am. Chem. Soc.  2005,  127:  18143 
  • 3i Seela F. Peng X. Li H. J. Am. Chem. Soc.  2005,  127:  7739 
  • 3j Seela F. Chittepu P. J. Org. Chem.  2007,  72:  4358 
  • 3k Schwögler A. Carell T. Org. Lett.  2000,  2:  1415 
  • 3l Clever GH. Kaul C. Carell T. Angew. Chem. Int. Ed.  2007,  46:  6226 
  • 3m Böge N. Jacobsen MI. Szombati Z. Baerns S. Di Pasquale F. Marx A. Meier C. Chem. Eur. J.  2008,  14:  11194 
  • 3n Chandra M. Keller S. Gloeckner C. Bornemann B. Marx A. Chem. Eur. J.  2007,  13:  3558 
  • 4a De Clercq E. Holy A. Nat. Rev. Drug Discov.  2005,  4:  928 
  • 4b De Clercq E. Antivir. Res.  2005,  67:  56 
  • 5a For the use of Eicar, Ribavirin and Mizoribine as Inosine Monophosphate Dehydrogenase (IMPDH) inhibitors, see: Moya J. Pizarro H. Jashés M. De Clercq E. Sandino AM. Antivir. Res.  2000,  48:  125; 
  • 5b Shu Q. Nair V. Med. Res. Rev.  2008,  28:  219 
  • 5c Barnard DL. Day CW. Bailey K. Heiner M. Montgomery R. Lauridsen L. Winslow S. Hoopes J. Li JK. Carson DA. Cottam HB. Sidwell RW. Antivir. Res.  2006,  71:  53 
  • 6a Suwa A. Hirakata M. Kaneko Y. Sato S. Suzuki Y. Huwana M. Clin. Rheumatol.  2009,  28:  227 
  • 6b Yokota S. Pediatr. Int.  2002,  44:  196 
  • 7a Broggi J. Kumamoto H. Berteina-Raboin S. Nolan SP. Agrofoglio LA. Eur. J. Org. Chem.  2009,  1880 
  • 7b Pradere U. Roy V. McBrayer TR. Schinazi RF. Agrofolio LA. Tetrahedron  2008,  64:  9044 
  • 7c Joubert N. Shinazi RF. Agrofoglio LA. Tetrahedron  2005,  61:  11744 
  • 8a Zhu R. Wang M. Xia Y. Qu F. Neyts J. Peng L. Bioorg. Med. Chem. Lett.  2008,  18:  3321 
  • 8b Li W. Xia Y. Fan Z. Qu F. Wu Q. Peng L. Tetrahedron Lett.  2008,  49:  2804 
  • 8c Xia Y. Li W. Qu F. Fan Z. Liu X. Berro C. Rauzy E. Peng L. Org. Biomol. Chem.  2007,  5:  1695 
  • 9 Ackermann L. Potukichi HK. Landsberg D. Vicente R. Org. Lett.  2008,  10:  3081 
  • 10 Li L. Zhang G. Zhu A. Zhang L. J. Org. Chem.  2008,  73:  3630 
  • 11a El Akri K. Bougrin K. Balzarini J. Faraj A. Benhida R. Bioorg. Med. Chem. Lett.  2007,  17:  6656 
  • 11b Guezguez R. Bougrin K. El Akri K. Benhida R. Tetrahedron Lett.  2006,  47:  4807 
  • 12a Peyron C. Benhida R. Bories C. Loiseau P. Bioorg. Chem.  2005,  33:  439 
  • 12b Spadafora M. Burger A. Benhida R. Synlett  2008,  1225 
  • 12c Spadafora M. Mehiri M. Burger A. Benhida R. Tetrahedron Lett.  2008,  49:  3967 
  • 12d Peyron C. Benhida R. Synlett  2009,  3:  472 
  • 13a Tornoe CW. Christensen C. Meldal MJ. J. Org. Chem.  2002,  67:  3057 
  • 13b Rostovtsev VV. Gree LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed.  2002,  41:  2596 
  • 14 For mechanistic studies on the Cu-catalyzed alkyne-azide 1,3-dipolar cycloaddition, see: Himo F. Locell T. Hilgtaf R. Rostovtsev VV. Noodleman L. Sharpless KB. Fokin VV. J. Am. Chem. Soc.  2005,  127:  210 
  • 16a Benhida R. Blanchard P. Fourrey J.-L. Tetrahedron Lett.  1998,  39:  6849 
  • 16b Wirth T. Hirt UH. Synthesis  1999,  1271 
  • 16c Zhdankin VV. Stang PJ. Chem. Rev.  2002,  102:  2523 
  • 16d Wirth T. Top. Curr. Chem.  2003,  224 
  • 17 With excess of I2 as electrophile the reaction was sluggish when only one equivalent of DIPEA was used
1

Present address: Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, Faculté des Sciences, Université Mohamed-V Rabat-Agdal, Morocco

15

2a: ¹H NMR (200 MHz, CDCl3): δ = 1.36 (t, J = 7.1 Hz, 3 H, CH3), 1.97 (s, 3 H, Ac), 2.07 (s, 6 H, Ac), 4.07 (dd, J = 12.3, 4.2 Hz, 1 H, H-5′), 4.25-4.50 (m, 4 H, H-4′, H-5′ and CH2 ester), 5.72 (t, J = 5.5 Hz, 1 H, H-3′), 6.07 (dd, J = 5.5, 3.1 Hz, 1 H, H-2′), 6.12 (d, J = 3.1 Hz, 1 H, H-1′). ¹³C NMR (50 MHz, CDCl3): δ = 14.2, 20.4, 20.5, 20.6, 61.6, 62.5, 70.9, 73.9, 81.5, 90.3, 142.2, 159.9, 169.2, 169.4, 170.4. HRMS (ESI): m/z [M+H]+ calcd for C16H21N3O9I: 526.0322; found: 526.0317.

18

Typical procedure: To a solution of azido-sugar (1 mmol) in CH2Cl2 (10 mL) were successively added alkyne (1.1 equiv), electrophile (3 equiv), CuX (CuI, CuBr or CuCl, 1.1 equiv) and DIPEA (see Table  [¹] and Table  [²] ). The reaction mixture was stirred at r.t. until the reaction was complete as indicated by TLC. The mixture was filtered through Celite and the solvent was removed. The crude product was purified by flash silica gel chromatography (cyclohexane-EtOAc, 9:1→1:1) to afford the desired 1,4,5-trisubstituted triazoles.
Analytical data for selected compounds:
2d: ¹H NMR (200 MHz, CDCl3): δ = 1.28 (t, J = 7.1 Hz, 3 H, CH3), 1.97 (s, 3 H, Ac), 1.98 (s, 3 H, Ac), 2.04 (s, 3 H, Ac), 4.05 (dd, J = 13.1, 5.1 Hz, 1 H, H-5′), 4.25-4.40 (m, 4 H, H-4′, H-5′ and CH2 ester), 5.72 (t, J = 5.5 Hz, 1 H, H-3′), 5.88 (dd, J = 5.2, 3.0 Hz, 1 H, H-2′), 6.27 (d, J = 3.0 Hz, 1 H, H-1′), 7.17-7.25 (m, 3 H, H-Ar), 7.31-7.40 (m, 2 H, H-Ar). ¹³C NMR (50 MHz, CDCl3): δ = 14.3, 20.5, 20.6, 20.8, 61.7, 62.7, 71.0, 74.3, 81.2, 88.9, 128.3, 128.7, 129.9, 132.6, 136.8, 160.3, 169.2, 169.5, 170.7, 172.0. HRMS (ESI):
m/z [M + H]+ calcd for C22H26N3O9Se: 556.0834; found: 526.0829.
2e: ¹H NMR (200 MHz, CDCl3): δ = 0.93 (t, J = 7.1 Hz, 3 H, CH3), 1.96 (s, 3 H, Ac), 2.02 (s, 3 H, Ac), 2.03 (s, 3 H, Ac), 2.37 (s, 3 H, CH3Ph), 3.99 (dd, J = 12.3, 4.5 Hz, 1 H, H-5′), 4.07 (q, J = 7.1 Hz, 2 H, CH2 ester), 4.17 (dd, J = 12.3, 3.3 Hz, 1 H, H-5′), 4.31 (dd, J = 7.9, 4.5 Hz, 1 H, H-4′), 5.59 (t, J = 4.7 Hz, 1 H, H-3′), 6.07 (m, 2 H, H-1′ and H-2′), 7.23 (d, J = 8.1 Hz, 2 H, H-Ar), 7.59 (d, J = 8.1 Hz, 2 H, H-Ar). ¹³C NMR (50 MHz, CDCl3): δ = 13.6, 20.3, 20.4, 20.6, 21.9, 61.6, 62.5, 70.8, 73.7, 81.7, 89.4, 129.7, 133.7, 137.6, 138.8, 146.5, 159.4, 169.1, 169.4, 170.4, 185.4. HRMS (ESI): m/z [M + H]+ calcd for C24H28N3O10: 518.1775; found: 518.1781.
2h: ¹H NMR (200 MHz, CDCl3): δ = 3.86 (s, 3 H, OCH3), 4.61 (dd, J = 12.2, 4.9 Hz, 1 H, H-5′), 4.78 (dd, J = 12.2, 3.7 Hz, 1 H, H-5′), 4.94 (dd, J = 10.9, 5.3 Hz, 1 H, H-4′), 6.35 (dd, J = 7.0, 5.1 Hz, 1 H, H-3′), 6.40 (d, J = 2.0 Hz, 1 H, H-1′), 6.50 (dd, J = 5.1, 2.0 Hz, 1 H, H-2′), 7.00 (d, J = 8.9 Hz, 2 H, H-Ar), 7.30-7.65 (m, 9 H, H-Ar), 7.85-8.10 (m, 8 H, H-Ar). ¹³C NMR (50 MHz, CDCl3): δ = 55.4, 63.7, 71.9, 75.1, 81.2, 88.2, 114.3, 121.5, 128.1, 128.5, 128.6, 128.7, 130.0, 133.3, 133.7, 134.0, 142.3, 160.1, 165.2, 166.3.
MS (ES): m/z = 75.8 [M + Na].

19

To a solution of 2a (1 mmol) in toluene (10 mL) were successively added 2-(tributylstannyl)furan (2 equiv), Pd(PPh3)2Cl2 (5 mol%), CuI (5 mol%) and Et3N (1 equiv). The reaction mixture was stirred for 30 min at 80 ˚C. After the reaction was complete (¹H NMR monitoring), the mixture was filtered through Celite and the solvent was removed. The crude product was purified by flash silica gel chromatography (cyclohexane-EtOAc, 9:1→1:1) to afford the desired compound in 95% isolated yield. ¹H NMR (200 MHz, CDCl3): δ = 1.37 (t, J = 7.1 Hz, 3 H, CH3), 2.00 (s, 3 H, Ac), 2.09 (s, 3 H, Ac), 2.10 (s, 3 H, Ac), 4.11 (dd, J = 12.1, 4.4 Hz, 1 H, H-5′), 4.30-4.50 (m, 4 H, H-4′, H-5′ and CH2 ester), 5.82 (t, J = 6.2 Hz, 1 H, H-3′), 6.17 (dd, J = 5.2, 2.9 Hz, 1 H, H-2′), 6.39 (d, J = 2.9 Hz, 1 H, H-1′), 6.60 (dd, J = 3.4, 1.8 Hz, 1 H, H-furan), 7.45 (d, J = 3.4 Hz, 1 H, H-furan), 7.66 (d, J = 1.8 Hz, 1 H, H-furan). ¹³C NMR (50 MHz, CDCl3): δ = 14.4, 20.6, 20.8, 61.6, 62.9, 71.2, 74.4, 81.4, 89.7, 112.4, 117.6, 139.0, 145.3, 151.5, 157.9, 160.8, 169.4, 169.5, 170.7. HRMS (ESI): m/z [M + H]+
calcd for C20H24N3O10: 466.1462; found: 466.1456. This compound was then dissolved in MeOH (8 mL) and the solution was saturated with ammonia at 0 ˚C and stirred for 1 h at r.t. The crude product was evaporated and purified by flash silica gel chromatography (CH2Cl2-MeOH, 9:1) to afford nucleoside 4 in 91% yield. Free nucleoside 4: ¹H NMR (200 MHz, CD3OD): δ = 3.60 (dd, J = 12.1, 5.6 Hz, 1 H, H-5′), 3.75 (dd, J = 12.2, 3.7 Hz, 1 H, H-5′), 3.88 (s, 3 H, OMe), 4.13 (dd, J = 9.2, 5.5 Hz, 1 H, H-4′), 4.51 (t, J = 5.4 Hz, 1 H, H-3′), 4.87 (t, J = 1.7 Hz, 1 H, H-2′), 6.17 (d, J = 2.9 Hz, 1 H, H-1′), 6.69 (dd, J = 3.4, 1.8 Hz, 1 H, H-furan), 7.36 (d, J = 3.4 Hz, 1 H, H-furan), 7.82 (d, J = 1.8 Hz, 1 H, H-furan). ¹³C NMR (50 MHz, CD3OD): δ = 52.6, 63.3, 72.2, 76.0, 87.3, 93.3, 113.0, 118.0, 139.8, 147.0, 159.0, 161.7, 162.2. HRMS (ESI): m/z [M + Na]+ calcd for C13H15N3O7Na: 348.0808; found: 348.0807.

20

The Eicar analogue 5 was prepared using standard Sonogashira coupling to give the protected nucleoside intermediate: ¹H NMR (200 MHz, CDCl3): δ = 0.27 (s, 9 H, TMS), 1.37 (t, J = 7.2 Hz, 3 H, CH3), 2.02 (s, 3 H, Ac), 2.09 (s, 3 H, Ac), 2.10 (s, 3 H, Ac), 4.12 (dd, J = 12.9, 5.4 Hz, 1 H, H-5′), 4.32-4.52 (m, 4 H, H-4, H-5′ and CH2 ester), 5.73 (t, J = 6.2 Hz, 1 H, H-3′), 5.90 (dd, J = 5.2, 2.8 Hz, 1 H, H-2′), 6.16 (d, J = 2.8 Hz, 1 H, H-1′). ¹³C NMR (50 MHz, CDCl3): δ = -0.6, 14.3, 20.4, 20.5, 20.7, 61.5, 62.6, 70.7, 74.1, 81.1, 88.8, 113.6, 124.6, 140.6, 159.6, 169.2, 169.4, 170.6. HRMS (ESI): m/z [M + H]+ calcd for C21H30N3O9Si: 496.1751; found: 496.1746.
Methanolysis of this intermediate as described above (MeOH, NH3, 48 h) led to the free nucleoside 5: ¹H NMR (200 MHz, CD3OD): δ = 3.40 (s, 1 H, H-alkyne), 3.60 (dd, J = 12.1, 5.7 Hz, 1 H, H-5′), 3.74 (dd, J = 12.1, 3.8 Hz, 1 H, H-5′), 4.11 (dd, J = 9.3, 5.4 Hz, 1 H, H-4′), 4.45 (t, J = 5.4 Hz, 1 H, H-3′), 4.75 (t, J = 3.4 Hz, 1 H, H-2′), 6.09 (d, J = 3.4 Hz, 1 H, H-1′). ¹³C NMR (50 MHz, CD3OD): δ = 63.3, 72.2, 75.8, 87.4, 92.5, 94.5, 123.8, 144.3, 159.1, 163.3. HRMS (ESI): m/z [M + H]+ calcd for C10H13N4O5: 269.0886; found: 269.0882.