Subscribe to RSS
DOI: 10.1055/s-0029-1217565
A Straightforward Route to Piloty’s Acid Derivatives: A Class of Potential Nitroxyl-Generating Prodrugs
Publication History
Publication Date:
15 July 2009 (online)
Abstract
A series of Piloty’s acid derivatives were easily prepared under mild and neutral conditions. The ease of isolation of the final product offers a marked advantage over well-known procedures. This methodology is particularly attractive as it cleanly provided low molecular weight aliphatic sulfohydroxamic acids, which are very interesting for their tendency to generate HNO under physiological conditions.
Key words
Piloty’s acid - NO - HNO - MgO - sulfohydroxamic acids
-
1a
Furchgott RF.Zawadzki JV. Nature (London) 1980, 288: 373 -
1b
Ignarro LJ.Buga GM.Wood KS.Byrns RE.Chaudhuri G. Proc. Natl. Acad. Sci. U.S.A 1987, 84: 9265 -
1c
Palmer RM.Ferrige AG.Moncada S. Nature (London) 1987, 327: 524 -
1d
Wilson KE. Cenear 2004, 82: 39 -
2a
Murphy ME.Sies H. Proc. Natl. Acad. Sci. U.S.A. 1991, 88: 10860 -
2b
Stamler JS.Singel DJ.Loscalzo J. Science 1992, 258: 1898 -
2c
Sharpe MA.Cooper CE. Biochem. J. 1998, 332: 9 -
2d
Hughes MN. Biochim. Biophys. Acta 1999, 1411: 263 -
2e
Lee MJC.Shoeman DW.Goon JW.Nagasawa HT. Nitric Oxide: Biol. Chem. 2001, 5: 278 -
3a
Fukuto JM.Switzer CH.Miranda KM.Wink DA. Ann. Rev. Pharmacol. Toxicol. 2005, 45: 335 -
3b
Schmidt HHHW.Hofman H.Schindler U.Shutenko ZS.Cunningham DD.Feelisch M. Proc. Natl. Acad. Sci. U.S.A. 1996, 93: 14492 - HNO can only be detected indirectly by means of characteristic downstream products. The major hindrance to the understanding of HNO chemistry is the quick dehydrative dimerization of HNO, which yields N2O via a transient hyponitrous acid:
-
4a
Smith PAS.Hein GE.
J. Am. Chem. Soc. 1960, 82: 5731 -
4b
Kohout FC.Lampe FW. J. Am. Chem. Soc. 1965, 87: 5795 - 5 Angeli’s salt is cytotoxic
at low millimolar concentrations:
Wink DA. Arch. Biochem. Biophys. 1998, 351: 66 - 6
Wink DA.Miranda KM.Katori T.Mancardi D.Thomas DD.Ridnour L.Espey MG.Feelisch M.Colton CA.Fukuto JM.Kass DA.Paolocci N. Am. J. Physiol. Heart Circ. Physiol. 2003, 285: H2264 -
7a
Piloty O. Ber. Dtsch. Ges. 1896, 29: 1559 -
7b Piloty’s acids
have shown to be selective inhibitors of human mitochondrial aldehyde
dehydrogenase and potent vasodilators. See:
King SB.Nagasawa HT. Chemical approaches toward generation of nitroxyl (HNO), in Methods in EnzymologyPacker L. Academic Press; New York: 1998. p.211-220 - 8
Miranda KM. Coord. Chem. Rev. 2005, 249: 433 ; and references cited therein -
9a
Bonner FT.Ko Y. Inorg. Chem. 1992, 31: 2514 -
9b
Fukuto JM.Hszieh R.Gulati P.Chiang KT.Nagasawa HT. Biochem. Biophys. Res. Commun. 1992, 187: 1367 -
10a
Grzesiok A.Weber H.Zamora Pino R.Feelisch M. In The Biology of Nitric OxideMoncada S.Feelisch M.Busse R.Higgs EA. Portland Press; London: 1994. p.238-241 -
10b
Zamora R.Grzesiok A.Weber H.Feelisch M. Biochem. J. 1995, 312: 333 -
10c
Nagasawa HT.Kawle SP.Elberling JA.DeMaster EG.Fukuto JM. J. Med. Chem. 1995, 38: 1865 -
10d
Granik VG.Grigor’ev NB. Russ. Chem. Bull. Int. Ed. 2002, 51: 1375 -
10e
Wilkins PC.Jacobs HK.Michael D.Johnson MD.Gopalan AS. Inorg. Chem. 2004, 43: 7877 ; references cited therein -
11a
Shoeman DW.Nagasawa HT. Nitric Oxide 1998, 2: 66 -
11b
Shirota FS.DeMaster EG.Lee MJC.Nagasawa HT. Nitric Oxide 1999, 3: 445 - 12
Toscano JP,Brookfield FA,Cohen AD,Courtney SM,Frost LM, andKalish VJ. inventors; US Patent, 20070299107A1. Recently, Toscano et al. have demonstrated that a series of aromatic and nonaromatic N-hydroxysulfonamide derivatives release nitroxyl at a controlled rate under physiological conditions: - 13
Blackburn M.Mann BE.Taylor BF.Worrall AF. Eur. J. Biochem. 1985, 153: 553 -
14a
Gattermann L. Laboratory Methods of Organic Chemistry The Macmillan Company; New York: 1937. -
14b
Scolz JN.Engel SP.Glidewell C.Whitmire K. Tetrahedron 1989, 45: 7695 -
16a
Fujimoto M.Sakai M. Chem. Pharm. Bull. 1965, 13: 248 -
16b
Keasling HH.Schumann EL.Veldkamp W. J. Med. Chem. 1965, 8: 548 - 17 Although sulfonyl chlorides are
widely used for N-sulfo-nylation of amines, their drawbacks are
the instability and the too strong reactivity:
Kim H.-K.Park Y.-D.Lee M.-H.Chung H.-A.Kweon D.-H.Cho S.-D.Yoon Y.-J. Bull. Korean Chem. Soc. 2003, 24: 1655 -
19a
Graham SL.Scholz TH. Synthesis 1986, 1031 -
19b
Boruah A.Baruah M.Prajapati D.Sandhu JS. Synlett 1997, 1253 -
19c
Iyer S.Sattar AK. Synth. Commun. 1998, 28: 1721 -
19d
Chan WY.Berthelette C. Tetrahedron Lett. 2002, 43: 4537 -
19e
Baskin JM.Wang Z. Tetrahedron Lett. 2002, 43: 8479 -
19f
Caddick S.Wilden JD.Bush HD.Wadman SN.Judd DB. Org. Lett. 2002, 4: 2549 -
19g
Caddick S.Wilden JD.Judd DB. J. Am. Chem. Soc. 2004, 126: 1024 -
19h
Katritzky AR.Rodriguez-Garcia V.Fair SK. J. Org. Chem. 2004, 69: 1849 -
19i
Caddick S.Wilden JD.Judd DB. Chem. Commun. 2005, 2727 -
19j
Wilden JD.Judd DB.Caddick S. Tetrahedron Lett. 2005, 46: 7637 -
19k
Massah A.Kazemi F.Azadi D.Farzaneh S.Aliyan H.Naghazh HJ.Momeni AR. Lett. Org. Chem. 2006, 3: 235 -
19l
Chantarasriwong O.Jang DO.Chavasiri W. Tetrahedron Lett. 2006, 47: 7489 -
19m
Harmata M.Zheng P.Huang C.Gomes MG.Ying W.Ranyanil K.-O.Balan G.Calkins NL. J. Org. Chem. 2007, 72: 683 -
19n
Wilden JD.Geldeard L.Lee CC.Judd DB.Caddick S. Chem. Commun. 2007, 1074 -
20a
Sharghi H.Hosseini M. Synthesis 2002, 1057 -
20b
Sarvari HM.Sharghi H. J. Org. Chem. 2004, 69: 6953 -
20c
Varma RS. Green Chem. 1999, 1: 43 - 21
Kang HH.Rho HS.Kim D.-H.Oha S.-G. Tetrahedron Lett. 2003, 44: 7225 - 22 Among these metal-mediated reactions,
magnesium oxide has received considerable interest because of its
novel surface catalytic properties:
Kim D.-H.Rho H.-S.Youb JW.Lee JC. Tetrahedron Lett. 2002, 43: 277 - 23 Babu et al. have demonstrated the
advantages obtained by the use of magnesium oxide in the synthesis
of N-Fmoc-protected amino acid hydroxamates:
Vasanthakumar G .-R.Babu VVS. Tetrahedron Lett. 2003, 44: 4099 -
26a
Hanzlik RP. Inorganic Aspects of Biological and Organic Chemistry Academic Press; New York: 1976. p.215 -
26b
Comins D.Meyers AI. Synthesis 1978, 403 -
26c
Eiki T.Horiguchi T.Ono M.Kawada S.Tagaki W. J. Am. Chem. Soc. 1982, 104: 1986 -
26d
Hanessian S.Kagotani M.Komaglou K. Heterocycles 1989, 28: 1115 -
26e
Sammakia T.Jacobs JS. Tetrahedron Lett. 1999, 40: 2685 - 27
Guo Z.Dowdy ED.Li W.-S.Polniaszek R.Delaney E. Tetrahedron Lett. 2001, 42: 1843
References and Notes
During the recrystallization of benzenesulfohydroxamic acid previously prepared via a classical sulfonylation procedure Engel et al. (ref. 14b) have isolated and characterized several side products such as, for example: PhSO3 - + H3NNHSO2Ph and PhSH (accounted for the reduction of PhSO2Cl by NH2OH).
18Low molecular weight aliphatic sulfohydroxamic acids are the most important compounds for their tendency to generate HNO under physiological condition (at about pH 7, see Scheme [¹] ).
24The structure of 2a was verified by ¹H NMR and ¹³C NMR and mass spectroscopy.
25
General Procedure
for the Sulfonylation of Hydroxylamine in the Presence of MgO;
N
-Hydroxy-2-methylbenzenesulfonamide
(2b): Hydroxylamine hydrochloride (0.72 g, 10 mmol) in MeOH-H2O
(3:2, 5 mL) was treated with MgO (0.34 g, 8.6 mmol), then a solution
of o-toluenesulfonyl chloride (1a; 0.8 g, 4.3 mmol) in THF (30 mL), and
MgO (0.17 g, 4.3 mmol) were added. The reaction was vigorously stirred
at r.t. until the sulfonyl chloride had completely disappeared (TLC:
EtOAc-hexane, 1:1; 2 h). Then, the mixture was filtered
first through a pad of Celite, and then on a short plug of silica
gel. The clear filtrate was dried over MgSO4 and evaporated
to dryness to give the resulting N-hydroxysulfonamide 2b (0.59 g, 74%) as a crystalline
white solid (96% purity); mp 178-180 ˚C. ¹H NMR
(CDCl3): δ = 7.93 (d, J = 8.0
Hz, 1 H), 7.75 (br s, 1 H), 7.42 (t, J = 7.3
Hz, 1 H), 7.27 (t, J = 7.5 Hz,
2 H), 2.62 (s, 3 H). ¹³C NMR (CDCl3): δ = 138.3,
134.8, 133.1, 132.3, 130.7, 125.9, 20.5. HRMS (ESI): m/z [M + H+] calcd
for C7H10NO3S: 188.0381; found:
188.0377. Anal. Calcd for C7H9NO3S:
C, 44.91; H, 4.85; N, 7.48. Found: C, 44.83; H, 4.71; N, 7.57.
4-
tert
-Butyl-
N
-hydroxybenzenesulfonamide (2c): According
to the procedure previously described for 2b,
the sulfohydroxamic acid 2c was isolated
as a white waxy solid in 77% yield (98% purity). ¹H
NMR (DMSO): δ = 9.53 (s, 1 H), 7.52 (d, J = 8.5 Hz, 2 H), 7.32 (d, J = 8.4 Hz, 2 H), 1.24 (s, 9
H). ¹³C NMR (DMSO): δ = 156.4,
134.7, 125.9, 125.5, 35.1, 31.3. HRMS (ESI): m/z [M + H+] calcd
for C10H16NO3S: 230.0851; found:
230.0857. Anal. Calcd for C10H15NO3S:
C, 52.38; H, 6.59; N, 6.11. Found: C, 52.44; H, 6.39; N, 6.01.
N
-Hydroxy-2,4,6-triisopropylbenzenesulfonamide
(2d): According to the procedure previously described for 2b, the sulfohydroxamic acid 2d was isolated as a crystalline white solid
in 90% yield (96% purity); mp 212-213 ˚C
(dec.). ¹H NMR (DMSO): δ = 7.51
(br s, 2 H), 6.92 (s, 2 H), 4.53 (m, 2 H), 2.75 (m, 1 H), 1.13 (d, J = 6.9 Hz, 6 H), 1.07 (d, J = 6.8 Hz, 12 H). ¹³C
NMR (DMSO): δ = 147.4, 146.9, 141.8, 121.5, 33.4,
28.2, 24.9, 23.9. HRMS (ESI): m/z [M + H+] calcd
for C15H26NO3S: 300.1633; found:
300.1626. Anal. Calcd for C15H25NO3S:
C, 60.17; H, 8.42; N, 4.68. Found: C, 60.23; H, 8.49; N, 4.45.
N
-Hydroxy-2,6-dimethoxybenzenesulfonamide
(2e): According to the procedure previously described for 2b, the sulfohydroxamic acid 2e was isolated as a crystalline white solid
in 95% yield (97% purity); mp 158-160 ˚C. ¹H
NMR (DMSO): δ = 8.59 (d, J = 3.5
Hz, 1 H), 7.96 (d, J = 3.5 Hz, 1
H), 6.82 (d, J = 8.7 Hz, 1 H),
5.83 (m, 2 H), 3.02 (d, J = 6.6 Hz,
6 H). ¹³C NMR (DMSO): δ = 164.8,
158.3, 132.9, 116.4, 105.2, 56.2, 55.8. HRMS (ESI): m/z [M + H+] calcd
for C8H12NO5S: 234.0436; found:
234.0430. Anal. Calcd for C8H11NO5S:
C, 41.20; H, 4.75; N, 6.01. Found: C, 41.31; H, 4.70; N, 6.12.
N
-Hydroxythiophene-2-sulfonamide
(2f): According to the procedure previously described for 2b, the sulfo-hydroxamic acid 2f was isolated as a waxy solid in 96% yield
(97% purity). ¹H NMR (CDCl3): δ = 7.75
(m, 1 H), 7.71 (m, 1 H), 7.35 (br s, 2 H), 7.16 (m, 1 H). ¹³C
NMR (CDCl3): δ = 134.5, 133.9, 127.5,
116.5. HRMS (ESI): m/z [M + H+] calcd
for C4H6NO3S2: 179.9789;
found: 179.9793. Anal. Calcd for C4H5NO3S2:
C, 26.81; H, 2.81; N, 7.82. Found: C, 26.74; H, 2.90; N, 7.74.
N
-Hydroxy-2-nitrobenzenesulfonamide
(2g): According to the procedure previously described for 2a, the sulfo-hydroxamic acid 2g was isolated as a crystalline yellow
solid in 97% yield (99% purity); mp 154-157 ˚C. ¹H
NMR (DMSO): δ = 7.83 (d, J = 7.8
Hz, 1 H), 7.55 (m, 3 H).
¹³C
NMR (DMSO): δ = 130.7, 130.0, 129.1, 122.4. HRMS (ESI): m/z [M + H+] calcd
for C6H7N2O5S: 219.0076;
found: 219.0065. Anal. Calcd for C6H6N2O5S:
C, 33.03; H, 2.77; N, 12.84. Found: C, 32.91; H, 2.81; N, 12.92.
4-
tert
-Butyl-
N
-methoxy-
N
-methylbenezenesulfonamide (2j): According
to the procedure previously described for 2b,
the sulfohydroxamic acid 2j was isolated
as a crystalline white solid in 97% yield (99% purity);
mp 112-114 ˚C. ¹H NMR (CDCl3): δ = 7.80
(d, J = 8.3 Hz, 2 H), 7.57 (d, J = 8.3 Hz, 2 H), 3.82 (s, 3
H), 2.79 (s, 3 H), 1.36 (s, 9 H). ¹³C
NMR (CDCl3): δ = 157.6, 129.5, 129.2,
125.8, 63.7, 39.2, 35.2, 31.0. HRMS (ESI): m/z calcd for C12H19NO3S:
257.1086; found: 257.1081. Anal. Calcd for C12H19NO3S:
C, 56.01; H, 7.44; N, 5.44. Found: C, 55.89; H, 7.48; N, 5.37.
(7,7-Dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)-
N
-hydroxymethanesulfonamide
(2o): According to the procedure previously described for 2b, the sulfohydroxamic acid 2o was isolated as a crystalline white
solid in 98% yield (98% purity); mp 122-124 ˚C; [α]²0
D +27.89
(c = 0.384, MeOH). ¹H
NMR (DMSO): δ = 9.65 (s, 1 H), 9.05 (s, 1 H), 2.96
(d, J = 14.8 Hz, 1 H), 2.49
(m, 1 H), 2.32 (m, 2 H), 2.05 (t, J = 4.7
Hz, 1 H), 1.92 (m, 2 H), 1.43 (m, 2 H), 1.02 (s, 3 H), 0.80 (s,
3 H). ¹³C NMR (DMSO): δ = 185.76,
176.39, 59.40, 49.44, 45.45, 43.07, 42.75, 26.99, 26.88, 19.88,
19.3. HRMS (ESI): m/z calcd for C10H17NO4:
247.0878; found: 247.0871. Anal. Calcd for C10H17NO4S:
C, 48.57; H, 6.93; N, 5.66. Found: C, 48.52; H, 6.87; N, 5.71.