Synlett 2009(13): 2149-2153  
DOI: 10.1055/s-0029-1217565
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Straightforward Route to Piloty’s Acid Derivatives: A Class of Potential Nitroxyl-Generating Prodrugs

Andrea Porcheddu*, Lidia De Luca, Giampaolo Giacomelli
Dipartimento di Chimica, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
Fax: +39(079)212069; e-Mail: anpo@uniss.it;
Further Information

Publication History

Received 22 April 2009
Publication Date:
15 July 2009 (online)

Abstract

A series of Piloty’s acid derivatives were easily prepared under mild and neutral conditions. The ease of isolation of the final product offers a marked advantage over well-known procedures. This methodology is particularly attractive as it cleanly provided low molecular weight aliphatic sulfohydroxamic acids, which are very interesting for their tendency to generate HNO under physiological conditions.

    References and Notes

  • 1a Furchgott RF. Zawadzki JV. Nature (London)  1980,  288:  373 
  • 1b Ignarro LJ. Buga GM. Wood KS. Byrns RE. Chaudhuri G. Proc. Natl. Acad. Sci. U.S.A  1987,  84:  9265 
  • 1c Palmer RM. Ferrige AG. Moncada S. Nature (London)  1987,  327:  524 
  • 1d Wilson KE. Cenear  2004,  82:  39 
  • 2a Murphy ME. Sies H. Proc. Natl. Acad. Sci. U.S.A.  1991,  88:  10860 
  • 2b Stamler JS. Singel DJ. Loscalzo J. Science  1992,  258:  1898 
  • 2c Sharpe MA. Cooper CE. Biochem. J.  1998,  332:  9 
  • 2d Hughes MN. Biochim. Biophys. Acta  1999,  1411:  263 
  • 2e Lee MJC. Shoeman DW. Goon JW. Nagasawa HT. Nitric Oxide: Biol. Chem.  2001,  5:  278 
  • 3a Fukuto JM. Switzer CH. Miranda KM. Wink DA. Ann. Rev. Pharmacol. Toxicol.  2005,  45:  335 
  • 3b Schmidt HHHW. Hofman H. Schindler U. Shutenko ZS. Cunningham DD. Feelisch M. Proc. Natl. Acad. Sci. U.S.A.  1996,  93:  14492 
  • HNO can only be detected indirectly by means of characteristic downstream products. The major hindrance to the understanding of HNO chemistry is the quick dehydrative dimerization of HNO, which yields N2O via a transient hyponitrous acid:
  • 4a Smith PAS. Hein GE.
    J. Am. Chem. Soc.  1960,  82:  5731 
  • 4b Kohout FC. Lampe FW. J. Am. Chem. Soc.  1965,  87:  5795 
  • 5 Angeli’s salt is cytotoxic at low millimolar concentrations: Wink DA. Arch. Biochem. Biophys.  1998,  351:  66 
  • 6 Wink DA. Miranda KM. Katori T. Mancardi D. Thomas DD. Ridnour L. Espey MG. Feelisch M. Colton CA. Fukuto JM. Kass DA. Paolocci N. Am. J. Physiol. Heart Circ. Physiol.  2003,  285:  H2264 
  • 7a Piloty O. Ber. Dtsch. Ges.  1896,  29:  1559 
  • 7b Piloty’s acids have shown to be selective inhibitors of human mitochondrial aldehyde dehydrogenase and potent vasodilators. See: King SB. Nagasawa HT. Chemical approaches toward generation of nitroxyl (HNO), in Methods in Enzymology   Packer L. Academic Press; New York: 1998.  p.211-220  
  • 8 Miranda KM. Coord. Chem. Rev.  2005,  249:  433 ; and references cited therein
  • 9a Bonner FT. Ko Y. Inorg. Chem.  1992,  31:  2514 
  • 9b Fukuto JM. Hszieh R. Gulati P. Chiang KT. Nagasawa HT. Biochem. Biophys. Res. Commun.  1992,  187:  1367 
  • 10a Grzesiok A. Weber H. Zamora Pino R. Feelisch M. In The Biology of Nitric Oxide   Moncada S. Feelisch M. Busse R. Higgs EA. Portland Press; London: 1994.  p.238-241  
  • 10b Zamora R. Grzesiok A. Weber H. Feelisch M. Biochem. J.  1995,  312:  333 
  • 10c Nagasawa HT. Kawle SP. Elberling JA. DeMaster EG. Fukuto JM. J. Med. Chem.  1995,  38:  1865 
  • 10d Granik VG. Grigor’ev NB. Russ. Chem. Bull. Int. Ed.  2002,  51:  1375 
  • 10e Wilkins PC. Jacobs HK. Michael D. Johnson MD. Gopalan AS. Inorg. Chem.  2004,  43:  7877 ; references cited therein
  • 11a Shoeman DW. Nagasawa HT. Nitric Oxide  1998,  2:  66 
  • 11b Shirota FS. DeMaster EG. Lee MJC. Nagasawa HT. Nitric Oxide  1999,  3:  445 
  • 12 Toscano JP, Brookfield FA, Cohen AD, Courtney SM, Frost LM, and Kalish VJ. inventors; US Patent,  20070299107A1. Recently, Toscano et al. have demonstrated that a series of aromatic and nonaromatic N-hydroxysulfonamide derivatives release nitroxyl at a controlled rate under physiological conditions:
  • 13 Blackburn M. Mann BE. Taylor BF. Worrall AF. Eur. J. Biochem.  1985,  153:  553 
  • 14a Gattermann L. Laboratory Methods of Organic Chemistry   The Macmillan Company; New York: 1937. 
  • 14b Scolz JN. Engel SP. Glidewell C. Whitmire K. Tetrahedron  1989,  45:  7695 
  • 16a Fujimoto M. Sakai M. Chem. Pharm. Bull.  1965,  13:  248 
  • 16b Keasling HH. Schumann EL. Veldkamp W. J. Med. Chem.  1965,  8:  548 
  • 17 Although sulfonyl chlorides are widely used for N-sulfo-nylation of amines, their drawbacks are the instability and the too strong reactivity: Kim H.-K. Park Y.-D. Lee M.-H. Chung H.-A. Kweon D.-H. Cho S.-D. Yoon Y.-J. Bull. Korean Chem. Soc.  2003,  24:  1655 
  • 19a Graham SL. Scholz TH. Synthesis  1986,  1031 
  • 19b Boruah A. Baruah M. Prajapati D. Sandhu JS. Synlett  1997,  1253 
  • 19c Iyer S. Sattar AK. Synth. Commun.  1998,  28:  1721 
  • 19d Chan WY. Berthelette C. Tetrahedron Lett.  2002,  43:  4537 
  • 19e Baskin JM. Wang Z. Tetrahedron Lett.  2002,  43:  8479 
  • 19f Caddick S. Wilden JD. Bush HD. Wadman SN. Judd DB. Org. Lett.  2002,  4:  2549 
  • 19g Caddick S. Wilden JD. Judd DB. J. Am. Chem. Soc.  2004,  126:  1024 
  • 19h Katritzky AR. Rodriguez-Garcia V. Fair SK. J. Org. Chem.  2004,  69:  1849 
  • 19i Caddick S. Wilden JD. Judd DB. Chem. Commun.  2005,  2727 
  • 19j Wilden JD. Judd DB. Caddick S. Tetrahedron Lett.  2005,  46:  7637 
  • 19k Massah A. Kazemi F. Azadi D. Farzaneh S. Aliyan H. Naghazh HJ. Momeni AR. Lett. Org. Chem.  2006,  3:  235 
  • 19l Chantarasriwong O. Jang DO. Chavasiri W. Tetrahedron Lett.  2006,  47:  7489 
  • 19m Harmata M. Zheng P. Huang C. Gomes MG. Ying W. Ranyanil K.-O. Balan G. Calkins NL. J. Org. Chem.  2007,  72:  683 
  • 19n Wilden JD. Geldeard L. Lee CC. Judd DB. Caddick S. Chem. Commun.  2007,  1074 
  • 20a Sharghi H. Hosseini M. Synthesis  2002,  1057 
  • 20b Sarvari HM. Sharghi H. J. Org. Chem.  2004,  69:  6953 
  • 20c Varma RS. Green Chem.  1999,  1:  43 
  • 21 Kang HH. Rho HS. Kim D.-H. Oha S.-G. Tetrahedron Lett.  2003,  44:  7225 
  • 22 Among these metal-mediated reactions, magnesium oxide has received considerable interest because of its novel surface catalytic properties: Kim D.-H. Rho H.-S. Youb JW. Lee JC. Tetrahedron Lett.  2002,  43:  277 
  • 23 Babu et al. have demonstrated the advantages obtained by the use of magnesium oxide in the synthesis of N-Fmoc-protected amino acid hydroxamates: Vasanthakumar G .-R. Babu VVS. Tetrahedron Lett.  2003,  44:  4099 
  • 26a Hanzlik RP. Inorganic Aspects of Biological and Organic Chemistry   Academic Press; New York: 1976.  p.215 
  • 26b Comins D. Meyers AI. Synthesis  1978,  403 
  • 26c Eiki T. Horiguchi T. Ono M. Kawada S. Tagaki W. J. Am. Chem. Soc.  1982,  104:  1986 
  • 26d Hanessian S. Kagotani M. Komaglou K. Heterocycles  1989,  28:  1115 
  • 26e Sammakia T. Jacobs JS. Tetrahedron Lett.  1999,  40:  2685 
  • 27 Guo Z. Dowdy ED. Li W.-S. Polniaszek R. Delaney E. Tetrahedron Lett.  2001,  42:  1843 
15

During the recrystallization of benzenesulfohydroxamic acid previously prepared via a classical sulfonylation procedure Engel et al. (ref. 14b) have isolated and characterized several side products such as, for example: PhSO3 - + H3NNHSO2Ph and PhSH (accounted for the reduction of PhSO2Cl by NH2OH).

18

Low molecular weight aliphatic sulfohydroxamic acids are the most important compounds for their tendency to generate HNO under physiological condition (at about pH 7, see Scheme  [¹] ).

24

The structure of 2a was verified by ¹H NMR and ¹³C NMR and mass spectroscopy.

25

General Procedure for the Sulfonylation of Hydroxylamine in the Presence of MgO; N -Hydroxy-2-methylbenzenesulfonamide (2b): Hydroxylamine hydrochloride (0.72 g, 10 mmol) in MeOH-H2O (3:2, 5 mL) was treated with MgO (0.34 g, 8.6 mmol), then a solution of o-toluenesulfonyl chloride (1a; 0.8 g, 4.3 mmol) in THF (30 mL), and MgO (0.17 g, 4.3 mmol) were added. The reaction was vigorously stirred at r.t. until the sulfonyl chloride had completely disappeared (TLC: EtOAc-hexane, 1:1; 2 h). Then, the mixture was filtered first through a pad of Celite, and then on a short plug of silica gel. The clear filtrate was dried over MgSO4 and evaporated to dryness to give the resulting N-hydroxysulfonamide 2b (0.59 g, 74%) as a crystalline white solid (96% purity); mp 178-180 ˚C. ¹H NMR (CDCl3): δ = 7.93 (d, J = 8.0 Hz, 1 H), 7.75 (br s, 1 H), 7.42 (t, J = 7.3 Hz, 1 H), 7.27 (t, J = 7.5 Hz, 2 H), 2.62 (s, 3 H). ¹³C NMR (CDCl3): δ = 138.3, 134.8, 133.1, 132.3, 130.7, 125.9, 20.5. HRMS (ESI): m/z [M + H+] calcd for C7H10NO3S: 188.0381; found: 188.0377. Anal. Calcd for C7H9NO3S: C, 44.91; H, 4.85; N, 7.48. Found: C, 44.83; H, 4.71; N, 7.57.
4- tert -Butyl- N -hydroxybenzenesulfonamide (2c): According to the procedure previously described for 2b, the sulfohydroxamic acid 2c was isolated as a white waxy solid in 77% yield (98% purity). ¹H NMR (DMSO): δ = 9.53 (s, 1 H), 7.52 (d, J = 8.5 Hz, 2 H), 7.32 (d, J = 8.4 Hz, 2 H), 1.24 (s, 9 H). ¹³C NMR (DMSO): δ = 156.4, 134.7, 125.9, 125.5, 35.1, 31.3. HRMS (ESI): m/z [M + H+] calcd for C10H16NO3S: 230.0851; found: 230.0857. Anal. Calcd for C10H15NO3S: C, 52.38; H, 6.59; N, 6.11. Found: C, 52.44; H, 6.39; N, 6.01.
N -Hydroxy-2,4,6-triisopropylbenzenesulfonamide (2d): According to the procedure previously described for 2b, the sulfohydroxamic acid 2d was isolated as a crystalline white solid in 90% yield (96% purity); mp 212-213 ˚C (dec.). ¹H NMR (DMSO): δ = 7.51 (br s, 2 H), 6.92 (s, 2 H), 4.53 (m, 2 H), 2.75 (m, 1 H), 1.13 (d, J = 6.9 Hz, 6 H), 1.07 (d, J = 6.8 Hz, 12 H). ¹³C NMR (DMSO): δ = 147.4, 146.9, 141.8, 121.5, 33.4, 28.2, 24.9, 23.9. HRMS (ESI): m/z [M + H+] calcd for C15H26NO3S: 300.1633; found: 300.1626. Anal. Calcd for C15H25NO3S: C, 60.17; H, 8.42; N, 4.68. Found: C, 60.23; H, 8.49; N, 4.45.
N -Hydroxy-2,6-dimethoxybenzenesulfonamide (2e): According to the procedure previously described for 2b, the sulfohydroxamic acid 2e was isolated as a crystalline white solid in 95% yield (97% purity); mp 158-160 ˚C. ¹H NMR (DMSO): δ = 8.59 (d, J = 3.5 Hz, 1 H), 7.96 (d, J = 3.5 Hz, 1 H), 6.82 (d, J = 8.7 Hz, 1 H), 5.83 (m, 2 H), 3.02 (d, J = 6.6 Hz, 6 H). ¹³C NMR (DMSO): δ = 164.8, 158.3, 132.9, 116.4, 105.2, 56.2, 55.8. HRMS (ESI): m/z [M + H+] calcd for C8H12NO5S: 234.0436; found: 234.0430. Anal. Calcd for C8H11NO5S: C, 41.20; H, 4.75; N, 6.01. Found: C, 41.31; H, 4.70; N, 6.12.
N -Hydroxythiophene-2-sulfonamide (2f): According to the procedure previously described for 2b, the sulfo-hydroxamic acid 2f was isolated as a waxy solid in 96% yield (97% purity). ¹H NMR (CDCl3): δ = 7.75 (m, 1 H), 7.71 (m, 1 H), 7.35 (br s, 2 H), 7.16 (m, 1 H). ¹³C NMR (CDCl3): δ = 134.5, 133.9, 127.5, 116.5. HRMS (ESI): m/z [M + H+] calcd for C4H6NO3S2: 179.9789; found: 179.9793. Anal. Calcd for C4H5NO3S2: C, 26.81; H, 2.81; N, 7.82. Found: C, 26.74; H, 2.90; N, 7.74.
N -Hydroxy-2-nitrobenzenesulfonamide (2g): According to the procedure previously described for 2a, the sulfo-hydroxamic acid 2g was isolated as a crystalline yellow solid in 97% yield (99% purity); mp 154-157 ˚C. ¹H NMR (DMSO): δ = 7.83 (d, J = 7.8 Hz, 1 H), 7.55 (m, 3 H). ¹³C NMR (DMSO): δ = 130.7, 130.0, 129.1, 122.4. HRMS (ESI): m/z [M + H+] calcd for C6H7N2O5S: 219.0076; found: 219.0065. Anal. Calcd for C6H6N2O5S: C, 33.03; H, 2.77; N, 12.84. Found: C, 32.91; H, 2.81; N, 12.92.
4- tert -Butyl- N -methoxy- N -methylbenezenesulfonamide (2j): According to the procedure previously described for 2b, the sulfohydroxamic acid 2j was isolated as a crystalline white solid in 97% yield (99% purity); mp 112-114 ˚C. ¹H NMR (CDCl3): δ = 7.80 (d, J = 8.3 Hz, 2 H), 7.57 (d, J = 8.3 Hz, 2 H), 3.82 (s, 3 H), 2.79 (s, 3 H), 1.36 (s, 9 H). ¹³C NMR (CDCl3): δ = 157.6, 129.5, 129.2, 125.8, 63.7, 39.2, 35.2, 31.0. HRMS (ESI): m/z calcd for C12H19NO3S: 257.1086; found: 257.1081. Anal. Calcd for C12H19NO3S: C, 56.01; H, 7.44; N, 5.44. Found: C, 55.89; H, 7.48; N, 5.37.
(7,7-Dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)- N -hydroxymethanesulfonamide (2o): According to the procedure previously described for 2b, the sulfohydroxamic acid 2o was isolated as a crystalline white solid in 98% yield (98% purity); mp 122-124 ˚C; [α]²0 D +27.89 (c = 0.384, MeOH). ¹H NMR (DMSO): δ = 9.65 (s, 1 H), 9.05 (s, 1 H), 2.96 (d, J = 14.8 Hz, 1 H), 2.49 (m, 1 H), 2.32 (m, 2 H), 2.05 (t, J = 4.7 Hz, 1 H), 1.92 (m, 2 H), 1.43 (m, 2 H), 1.02 (s, 3 H), 0.80 (s, 3 H). ¹³C NMR (DMSO): δ = 185.76, 176.39, 59.40, 49.44, 45.45, 43.07, 42.75, 26.99, 26.88, 19.88, 19.3. HRMS (ESI): m/z calcd for C10H17NO4: 247.0878; found: 247.0871. Anal. Calcd for C10H17NO4S: C, 48.57; H, 6.93; N, 5.66. Found: C, 48.52; H, 6.87; N, 5.71.