Subscribe to RSS
DOI: 10.1055/s-0029-1217568
Enantioselective Ring Expansion of Prolinols: An Efficient and Short Synthesis of 2-Phenylpiperidin-3-ol Derivatives and 3-Hydroxypipecolic Acids
Publication History
Publication Date:
16 July 2009 (online)
Abstract
A very short route to 2-phenylpiperidin-3-ol derivatives and 3-hydroxypipecolic acids is described. The approach uses two key steps: a one-pot reduction/Grignard addition sequence applied to alkyl proline esters and a ring expansion applied to the corresponding prolinols.
Key words
reduction - Grignard addition - aziridinium - ring expansion - 2-phenylpiperidin-3-ols - 3-hydroxypipecolic acids
-
1a
Pinder AR. Nat. Prod. Rep. 1989, 6: 67 -
1b
Pinder AR. Nat. Prod. Rep. 1992, 9: 17 -
1c
Pinder AR. Nat. Prod. Rep. 1992, 9: 491 -
1d
Nadin A. Contemp. Org. Synth. 1997, 4: 387 -
1e
Bailey PD.Milwood PA.Smith PD. Chem. Commun. 1998, 663 -
1f
Bols M. Acc. Chem. Res. 1998, 31: 1 -
1g
Mitchinson A.Nadin A.
J. Chem. Soc., Perkin Trans. 1 1999, 2553 - 2
Fodor GB.Colasanti B. In Alkaloids: Chemical and Biological Perspectives Vol. 3:Pelletier SW. Wiley-Interscience; New York: 1985. p.1 -
3a
Baker R,Harrison T,Hollingworth GJ,Swain CJ, andWilliams BJ. inventors; EP 528,495A1. -
3b
Harrison T.Williams BJ.Swain CJ.Ball RG. Bioorg. Med. Chem. Lett. 1994, 4: 2545 -
3c
Kramer MS.Cutler N.Feighner J.Shrivastava R.Carman J.Sramek JJ.Reines SA.Liu G.Snavely D.Wyatt-Knowles E.Hale JJ.Mills SG.MacCoss M.Swain CJ.Harrison T.Hill RG.Hefti F.Scolnick EM.Cascieri MA.Chicchi GG.Sadowski S.Williams AR.Hewson L.Smith D.Carlson EJ.Hargreaves RJ.Rupniak NMJ. Science 1998, 1640 -
4a
Baker R,Cutis NR,Elliott JM,Harrison T,Hollingworth GJ,Jackson PS,Kulagowski JJ,Sewxard EM,Swain CJ, andWilliams BJ. inventors; Int. Patent WO 97/49710. -
4b
Kulagowski JJ.Curtis NR.Swain CJ.Williams BJ. Org. Lett. 2001, 3: 667 -
5a
von Euler US.Gaddum JH. J. Physiol. 1931, 72: 74 -
5b
Lotz M.Vaughan JH.Carson DA. Science 1987, 235: 893 -
5c
Lotz M.Vaughan JH.Carson DA. Science 1988, 241: 1218 -
5d
Mantyh CR.Gates TS.Zimmerman RP.Welton ML.Passaro EP.Vigna SR.Maggio JE.Kruger L.Manthy PW. Proc. Natl. Acad. Sci. U.S.A. 1998, 85: 3235 -
5e
Goadsby PJ.Edvinsson L.Ekman R. Ann. Neurol. 1988, 23: 193 -
5f
Perianan A.Synderman R.Malfroy B. Biochem. Biophys. Res. Commun. 1989, 161: 520 -
5g
Guard S.Watson SP. Neurochem. Int. 1991, 18: 149 -
6a
Suzuki K.Sato T.Morika M.Nagai K.Kenji A.Yamaguchi H.Sato TJ. J. Antibiot. 1991, 44: 479 -
6b
Sato T.Hirayama F.Saito T. J. Antibiot. 1991, 44: 1367 -
6c
Scott JD.Tippie TN.Williams RM. Tetrahedron Lett. 1998, 39: 3659 - 7
Quibell M.Benn A.Flinn N.Monk T.Ramjee M.Wang Y.Watts J. Bioorg. Med. Chem. 2004, 12: 5689 - For syntheses of (+)-L-733,060, see:
-
8a
Harrison T.Williams BJ.Swain CJ.Ball RG. Bioorg. Med. Chem. Lett. 1994, 4: 2545 -
8b
Calvez O.Chiaroni A.Langlois N. Tetrahedron Lett. 1998, 39: 9447 -
8c
Calvez O.Langlois N. Tetrahedron Lett. 1999, 40: 7099 -
8d
Stadler H.Bös M. Heterocycles 1999, 51: 1067 -
8e
Tomooka K.Nakazaki A.Nakaï T. J. Am. Chem. Soc. 2000, 122: 408 -
8f
Bhaskar G.Rao BV. Tetrahedron Lett. 2003, 44: 951 -
8g
Huang P.-Q.Liu L.-X.Wei B.-G.Ruan Y.-P. Org. Lett. 2003, 5: 1927 -
8h
Yoon Y.-J.Joo J.-E.Lee K.-Y.Kim Y.-H.Oh C.-Y.Ham W.-H. Tetrahedron Lett. 2005, 46: 739 -
8i
Kandula SRV.Kumar P. Tetrahedron: Asymmetry 2005, 16: 3579 -
8j
Oshitari T.Mandai T. Synlett 2006, 3395 -
8k
Cherian SK.Kumar P. Tetrahedron: Asymmetry 2007, 18: 892 -
8l
Emmanuvel L.Sudalai A. Tetrahedron Lett. 2008, 49: 5736 -
8m
Liu R.-H.Fang K.Wang B.Xu M.-H.Lin G.-Q. J. Org. Chem. 2008, 73: 3307 - For synthesis of (-)-L-733,061, see:
-
8n
Liu L.-X.Ruan Y.-P.Guo Z.-Q.Huang P.-Q. J. Org. Chem. 2004, 69: 6001 -
8o
Takahashi K.Nakano H.Fujita R. Tetrahedron Lett. 2005, 46: 8927 - 9 For synthesis of II,
see:
Kulagowski JJ.Curtis NR.Swain CJ.Williams BJ. Org. Lett. 2001, 3: 667 - For the synthesis of 3-hydroxypipecolic acids, see:
-
10a
Roemmele RC.Rapoport H. J. Org. Chem. 1989, 54: 1866 -
10b
Drummond J.Johnson G.Nickell DG.Ortwine DF.Bruns RF.Welbaum B. J. Med. Chem. 1989, 32: 2116 -
10c
Agami C.Couty F.Mathieu H. Tetrahedron Lett. 1996, 37: 4001 -
10d
Greck C.Ferreira F.Genêt J.-P. Tetrahedron Lett. 1996, 37: 2031 -
10e
Makara GM.Marshall GR. Tetrahedron Lett. 1997, 38: 5069 -
10f
Battistini L.Zanardi F.Rassu G.Spanu P.Pelosi G.Gasparri Fava G.Belicchi Ferrari M.Casiraghi G. Tetrahedron: Asymmetry 1997, 8: 2975 -
10g
Sugisaki CH.Carroll PJ.Correira CRD. Tetrahedron Lett. 1998, 39: 3413 -
10h
Scott JD.Tippie TN.Williams RM. Tetrahedron Lett. 1998, 39: 3659 -
10i
Shibasaki T.Sakurai W.Hasegawa A.Uosaki Y.Mori H.Yoshida M.Ozaki A. Tetrahedron Lett. 1999, 40: 5227 -
10j
Horikawa M.Busch-Petersen J.Corey EJ. Tetrahedron Lett. 1999, 40: 3843 -
10k
Jourdant A.Zhu J. Tetrahedron Lett. 2000, 41: 7033 -
10l
Scott JD.Williams RM. Tetrahedron Lett. 2000, 41: 8413 -
10m
Quibell M.Benn A.Flinn N.Monk T.Ramjee M.Wang Y.Watts J. Bioorg. Med. Chem. 2004, 12: 5689 -
10n
Bodas MS.Kumar P. Tetrahedron Lett. 2004, 45: 8461 -
10o
Kumar P.Bodas MS. J. Org. Chem. 2005, 70: 360 -
10p
Kim IS.Ji YJ.Jung YH. Tetrahedron Lett. 2006, 47: 7289 -
10q
Kim IS.Oh JS.Zee OP.Jung YH. Tetrahedron 2007, 63: 2622 -
10r
Takahashi R.Miyagawa T.Yoshimura Y.Kato A.Adachi I.Takahata H. Bioorg. Med. Chem. 2008, 18: 1810 -
10s
Alegret C.Ginesta X.Riera A. Eur. J. Org. Chem. 2008, 1789 -
10t
Liu L.-X.Peng Q.-L.Huang P.-Q. Tetrahedron: Asymmetry 2008, 19: 1200 -
10u
Kalamkar NB.Kasture VM.Dhavale DD. J. Org. Chem. 2008, 73: 3619 -
10v
Pham V.-T.Joo J.-E.Tian Y.-S.Chung Y.-S.Lee K.-Y.Oh C.-Y.Ham W.-H. Tetrahedron: Asymmetry 2008, 19: 318 - For comprehensive reviews, see:
-
11a
Cossy J.Gomez Pardo D. Chemtracts 2002, 15: 579 -
11b
Cossy J.Gomez Pardo D. Targets in Heterocyclic Systems Vol. 6:Attanasi OA.Spinelli D. Italian Society of Chemistry; Rome: 2002. p.1 -
12a
Cossy J.Dumas C.Michel P.Gomez Pardo D. Tetrahedron Lett. 1995, 36: 549 -
12b
Cossy J.Dumas C.Gomez Pardo D. Synlett 1997, 905 -
12c
Cossy J.Dumas C.Gomez Pardo D. Bioorg. Med. Chem. Lett. 1997, 7: 1343 -
12d
Wilken J.Kossenjans M.Saak W.Haase D.Pohl S.Martens J. Liebigs Ann./Recl. 1997, 573 -
12e
Langlois N.Calvez O. Synth. Commun. 1998, 28: 4471 -
12f
Davis PW.Osgood SA.Hébert N.Sprankle KG.Swayze EE. Biotechnol. Bioeng. 1999, 61: 143 -
12g
Cossy J.Dumas C.Gomez Pardo D. Eur. J. Org. Chem. 1999, 1693 -
12h
Michel P.Rassat A. J. Org. Chem. 2000, 65: 2572 -
12i
Cossy J.Mirguet O.Gomez Pardo D. Synlett 2001, 1575 -
12j
Brandi A.Cicchi S.Paschetta V.Gomez Pardo D.Cossy J. Tetrahedron Lett. 2002, 43: 9357 -
12k
Deyine A.Delcroix J.-M.Langlois N. Heterocycles 2004, 64: 207 -
12l
Déchamps I.Gomez Pardo D.Karoyan P.Cossy J. Synlett 2005, 1170 -
12m
Roudeau R.Gomez Pardo D.Cossy J. Tetrahedron 2006, 62: 2388 -
12n
Mena M.Bonjoch J.Gomez Pardo D.Cossy J. J. Org. Chem. 2006, 71: 5930 -
12o
Déchamps I.Gomez Pardo D.Cossy J. ARKIVOC 2007, (v): 38 -
12p
Déchamps I.Gomez Pardo D.Cossy J. Tetrahedron 2007, 63: 9082 -
12q
Métro T.-X.Gomez Pardo D.Cossy J. J. Org. Chem. 2007, 72: 6556 -
12r
Métro T.-X.Gomez Pardo D.Cossy J. Synlett 2007, 2888 -
12s
Cossy J.Gomez Pardo D.Dumas C.Mirguet O.Déchamps I.Métro T.-X.Burger B.Roudeau R.Appenzeller J.Cochi A. Chirality 2009, in press -
13a
Bilke JL.Moore SP.O’Brien P.Gilday J. Org. Lett. 2009, 11: 1935 -
13b
O’Brien et al. (ref 13a) have shown that the ring expansion of substituted pyrrolidinols 2b and 3b using TFAA (1.5 equiv), Et3N (3 equiv), in refluxing THF for 48 h, led to the ring-expanded compounds.
-
14a
Ibuka T.Habashita H.Otaka A.Fujii N.Ogushi Y.Uyehara T.Yamamoto Y. J. Org. Chem. 1991, 56: 4370 -
14b
Ito H.Ikeuchi Y.Taguchi T.Hanzawa Y.Shiro M. J. Am. Chem. Soc. 1994, 116: 5469 -
14c
Zhao Y. Master"s Thesis University of Pittsburgh; Pittsburgh: 2005; http://etd.library.pitt.edu/ETD/available/etd-12072005-173655/ -
14d
The excellent diastereoselectivity in the DIBAL-H/Grignard sequence was probably due to catalysis of the conversion of R2 to R1 (Scheme [³] ) due to the presence of MgBr2 in the Grignard reagent, whereas ZnCl2 or heat was used for this purpose in Ref. 14c
- 17 Langlois et al. have shown that
the ring expansion of substituted pyrrolidinols 3b using
TFAA (1.5 equiv), Et3N (3 equiv), in refluxing THF for
44 h, led to the ring-expanded compound 5 in
22% yield, together with the starting material, see:
Calvez O.Chiaroni A.Langlois N. Tetrahedron Lett. 1998, 39: 9447 - 18 For a related rearrangement under
different conditions, see:
Lee J.Hoang T.Lewis S.Weissman SA.Askin D.Volante RP.Reider PJ. Tetrahedron Lett. 2001, 42: 6223 -
19a
Liu L.-X.Ruan Y.-P.Guo Z.-Q.Huang P.-Q. J. Org. Chem. 2004, 69: 6001 -
19b
Takahashi K.Nakano H.Fujita R. Tetrahedron Lett. 2005, 46: 8927 -
20a
Calvez O.Langlois N. Tetrahedron Lett. 1999, 40: 7099 -
20b
Calvez O. PhD Dissertation Université Paris XI Orsay; France: 2001. - 21
Haddad M.Larchevêque M. Tetrahedron: Asymmetry 1999, 10: 4231
References and Notes
Ester reduction/alkylation
method: DIBAL-H (1.0 M in hexane, 2.61 mL, 2.61 mmol, 1.2 equiv)
was added to a solution of N-benzylproline
ethyl ester (500 mg, 2.17 mmol, 1 equiv) in CH2Cl2 (10
mL) at -78 ˚C. The resulting solution was
stirred at -78 ˚C for 30 min, followed
by the addition of commercially available PhMgBr (1.0 M in THF,
6.52 mL, 6.52 mmol, 3 equiv) dropwise at -78 ˚C.
The solution was then allowed to slowly warm to r.t. overnight.
Sat. aq NH4Cl (10 mL) was added to quench the reaction.
Sat. sodium tartrate solution (10 mL) was added to the resulting
gel. The mixture was stirred at r.t. for 30 min, then the organic
layer was extracted with CH2Cl2 (3 × 15
mL). The combined organic layers were dried over anhydrous MgSO4 and concentrated
in vacuo to give a separable mixture of diastereomers 2b and 3b, which
was purified by flash chromatography (SiO2; EtOAc-PE,
8:2) to give 2b as a yellow solid (155
mg, 27.5%) and 3b as a pale-yellow
oil (155 mg, 27.5%).
Compound
2b:
¹7,²0b R
f
= 0.1
(EtOAc-PE, 8:2); mp 93-95 ˚C; [α]D
²0 +106
(c 1.1, CHCl3). IR (neat):
3017, 1495, 1454 cm-¹. ¹H
NMR (CDCl3, 400 MHz): δ = 7.43-7.20
(m, 10 H), 4.39 (d, J = 5.2
Hz, 1 H), 3.67 (d, J = 13.0
Hz, 1 H), 3.34 (d, J = 13.0
Hz, 1 H), 3.08 (m, 1 H), 2.96 (m, 1 H),
2.40 (m, 1 H), 1.94 (m, 1 H), 1.80-1.71
(m, 3 H). ¹³C NMR (CDCl3,
100 MHz): δ = 143.8 (s), 139.5 (s), 128.8 (d),
128.7 (d), 128.6 (d), 128.4 (d), 128.4 (d), 128.3 (d), 128.3 (d), 127.1
(d), 127.0 (d), 126.2 (d), 75.3 (d), 70.2 (d), 61.2 (t), 54.3 (t),
29.4 (t), 24.3 (t). MS: m/z (%) = 160 (100)[M+˙ - CHOHPh˙],
91 (71) [PhCH2
+].
Compound 3b:
¹7,²0b R
f
= 0.2
(EtOAc-PE, 8:2); [α]D
²0 -54
(c 1, CHCl3). IR (neat): 3620,
2940, 2820, 1496, 1457 cm-¹. ¹H NMR
(CDCl3, 400 MHz): δ = 7.41-7.19
(m, 10 H), 4.89 (d, J = 3.1
Hz, 1 H), 4.18 (d, J = 12.7
Hz, 1 H), 3.46 (d, J = 12.7 Hz,
1 H), 3.05 (m, 1 H), 2.89 (m, 1 H), 2.33
(dd, J = 17,
8.1 Hz, 1 H), 1.73 (m, 1 H), 1.65-1.56
(m, 2 H), 1.32 (m, 1 H). ¹³C
NMR (CDCl3, 100 MHz): δ = 141.5 (s),
139.1 (s), 128.8 (d), 128.6 (d), 128.4 (d), 128.3 (d), 128.1 (d),
127.6 (d), 127.2 (d), 127.0 (d), 126.8 (d), 125.5 (d), 70.2 (d),
69.2 (d), 58.3 (t), 54.7 (t), 24.0 (t), 23.2 (t). MS: m/z (%) = 160 (100)[M+˙ - CHOHPh˙],
91 (71) [PhCH2
+].
General procedure
for the ring expansion of pyrrolidines to piperidines: Trifluoroacetic
anhydride (3-4 equiv) was added to a stirred solution of N-alkyl pyrrolidine (1 equiv) in THF
under argon at r.t. and Et3N (4-7 equiv) was
added. The solution was stirred and heated at 100 ˚C
for 3 h under microwave irradiation. The resulting solution was
cooled to r.t. and a solution of aqueous 3.75 M NaOH was added.
After stirring for 30 min, EtOAc was added and the two layers were
separated. The aqueous layer was extracted with EtOAc and the combined
organic layers were dried over anhydrous MgSO4 and evaporated
under reduced pressure to give the crude product.
Compound
4: Chromatography (SiO2; EtOAc-PE, 7:3), R
f
= 0.33
(EtOAc-PE, 7:3); ee >99% determined by supercritical
fluid chromatography on Daicel Chiralpak OD-H column (MeOH 5%,
flow rate 5 mL/min, t = 3.94
min); [α]D
²0 -25
(c 1.15, CHCl3). IR (neat):
3588, 3016, 2946, 1493, 1454 cm-¹. ¹H
NMR (CDCl3, 400 MHz): δ = 7.51-7.19
(m, 10 H), 3.87 (d, J = 13.6
Hz, 1 H), 3.74 (m, 1 H), 3.34 (d, J = 1.7 Hz,
1 H), 3.0 (m, 1 H), 2.88 (d, J = 13.6
Hz, 1 H), 2.05-1.89 (m, 3 H), 1.61 (m,
1 H), 1.47 (m, 1 H). ¹³C NMR
(CDCl3, 100 MHz): δ = 141.1 (s), 139.1
(s), 128.7 (d), 128.6 (d), 128.5 (d), 128.4 (d), 128.3 (d), 128.2
(d), 128.1 (d), 128.0 (d), 127.4 (d), 126.6 (d), 73.9 (d), 72.4
(d), 59.4 (t), 53.4 (t), 31.3 (t), 19.9 (t). MS: m/z (%) = 267
(3)[M+˙], 266 (3),
222 (15), 210 (6), 194 (15), 177 (13), 176 (100) [M+˙ - PhCH2
˙
], 106 (10), 91
(52) [PhCH2
+].
Compound 5:
¹7,²0b
Chromatography (SiO2; EtOAc-PE, 8:2), R
f
= 0.2
(EtOAc-PE, 8:2); ee >99% determined by supercritical
fluid chromatography on Daicel Chiralpak OD-H column (MeOH 5%,
flow rate 5 mL/min, t = 4.14
min); mp 139-141 ˚C; [α]D
²0 +27
(c 1, CHCl3). IR (neat): 3588, 3016,
2946, 1493, 1454 cm-¹. ¹H
NMR (CDCl3, 400 MHz): δ = 7.55-7.14
(m, 10 H), 3.66 (d, J = 13.6
Hz, 1 H), 3.59 (m, 1 H), 2.91 (d, J = 8.6 Hz,
1 H), 2.89 (m, 1 H), 2.83 (d, J = 13.6
Hz, 1 H), 2.09 (m, 1 H), 1.93 (m, 1 H),
1.70-1.60 (m, 2 H), 1.38 (m, 1 H). ¹³C
NMR (CDCl3, 100 MHz): δ = 141.1 (s),
139.6 (s), 128.8 (d), 128.7 (d), 128.6 (d), 128.2 (d), 128.1 (d),
127.9 (d), 127.8 (d), 127.6 (d), 126.9 (d), 126.7 (d), 76.0 (d),
73.9 (d), 59.3 (t), 52.4 (t), 32.5 (t), 23.3 (t). MS:
m/z (%) = 267
(3)[M+˙], 266 (3),
222 (15), 210 (6), 194 (15), 177 (13), 176 (100) [M+˙ - PhCH2
˙
], 106 (10), 91
(52) [PhCH2
+].