RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217568
Enantioselective Ring Expansion of Prolinols: An Efficient and Short Synthesis of 2-Phenylpiperidin-3-ol Derivatives and 3-Hydroxypipecolic Acids
Publikationsverlauf
Publikationsdatum:
16. Juli 2009 (online)
Abstract
A very short route to 2-phenylpiperidin-3-ol derivatives and 3-hydroxypipecolic acids is described. The approach uses two key steps: a one-pot reduction/Grignard addition sequence applied to alkyl proline esters and a ring expansion applied to the corresponding prolinols.
Key words
reduction - Grignard addition - aziridinium - ring expansion - 2-phenylpiperidin-3-ols - 3-hydroxypipecolic acids
- 1a 
             
            
Pinder AR. Nat. Prod. Rep. 1989, 6: 67 - 1b 
             
            
Pinder AR. Nat. Prod. Rep. 1992, 9: 17 - 1c 
             
            
Pinder AR. Nat. Prod. Rep. 1992, 9: 491 - 1d 
             
            
Nadin A. Contemp. Org. Synth. 1997, 4: 387 - 1e 
             
            
Bailey PD.Milwood PA.Smith PD. Chem. Commun. 1998, 663 - 1f 
             
            
Bols M. Acc. Chem. Res. 1998, 31: 1 - 1g 
             
            
Mitchinson A.Nadin A.
J. Chem. Soc., Perkin Trans. 1 1999, 2553 - 2 
             
            
Fodor GB.Colasanti B. In Alkaloids: Chemical and Biological Perspectives Vol. 3:Pelletier SW. Wiley-Interscience; New York: 1985. p.1 - 3a  
            
Baker R,Harrison T,Hollingworth GJ,Swain CJ, andWilliams BJ. inventors; EP 528,495A1. - 3b 
             
            
Harrison T.Williams BJ.Swain CJ.Ball RG. Bioorg. Med. Chem. Lett. 1994, 4: 2545 - 3c 
             
            
Kramer MS.Cutler N.Feighner J.Shrivastava R.Carman J.Sramek JJ.Reines SA.Liu G.Snavely D.Wyatt-Knowles E.Hale JJ.Mills SG.MacCoss M.Swain CJ.Harrison T.Hill RG.Hefti F.Scolnick EM.Cascieri MA.Chicchi GG.Sadowski S.Williams AR.Hewson L.Smith D.Carlson EJ.Hargreaves RJ.Rupniak NMJ. Science 1998, 1640 - 4a  
            
Baker R,Cutis NR,Elliott JM,Harrison T,Hollingworth GJ,Jackson PS,Kulagowski JJ,Sewxard EM,Swain CJ, andWilliams BJ. inventors; Int. Patent WO 97/49710. - 4b 
             
            
Kulagowski JJ.Curtis NR.Swain CJ.Williams BJ. Org. Lett. 2001, 3: 667 - 5a 
             
            
von Euler US.Gaddum JH. J. Physiol. 1931, 72: 74 - 5b 
             
            
Lotz M.Vaughan JH.Carson DA. Science 1987, 235: 893 - 5c 
             
            
Lotz M.Vaughan JH.Carson DA. Science 1988, 241: 1218 - 5d 
             
            
Mantyh CR.Gates TS.Zimmerman RP.Welton ML.Passaro EP.Vigna SR.Maggio JE.Kruger L.Manthy PW. Proc. Natl. Acad. Sci. U.S.A. 1998, 85: 3235 - 5e 
             
            
Goadsby PJ.Edvinsson L.Ekman R. Ann. Neurol. 1988, 23: 193 - 5f 
             
            
Perianan A.Synderman R.Malfroy B. Biochem. Biophys. Res. Commun. 1989, 161: 520 - 5g 
             
            
Guard S.Watson SP. Neurochem. Int. 1991, 18: 149 - 6a 
             
            
Suzuki K.Sato T.Morika M.Nagai K.Kenji A.Yamaguchi H.Sato TJ. J. Antibiot. 1991, 44: 479 - 6b 
             
            
Sato T.Hirayama F.Saito T. J. Antibiot. 1991, 44: 1367 - 6c 
             
            
Scott JD.Tippie TN.Williams RM. Tetrahedron Lett. 1998, 39: 3659 - 7 
             
            
Quibell M.Benn A.Flinn N.Monk T.Ramjee M.Wang Y.Watts J. Bioorg. Med. Chem. 2004, 12: 5689 - For syntheses of (+)-L-733,060, see:
 - 8a 
             
            
Harrison T.Williams BJ.Swain CJ.Ball RG. Bioorg. Med. Chem. Lett. 1994, 4: 2545 - 8b 
             
            
Calvez O.Chiaroni A.Langlois N. Tetrahedron Lett. 1998, 39: 9447 - 8c 
             
            
Calvez O.Langlois N. Tetrahedron Lett. 1999, 40: 7099 - 8d 
             
            
Stadler H.Bös M. Heterocycles 1999, 51: 1067 - 8e 
             
            
Tomooka K.Nakazaki A.Nakaï T. J. Am. Chem. Soc. 2000, 122: 408 - 8f 
             
            
Bhaskar G.Rao BV. Tetrahedron Lett. 2003, 44: 951 - 8g 
             
            
Huang P.-Q.Liu L.-X.Wei B.-G.Ruan Y.-P. Org. Lett. 2003, 5: 1927 - 8h 
             
            
Yoon Y.-J.Joo J.-E.Lee K.-Y.Kim Y.-H.Oh C.-Y.Ham W.-H. Tetrahedron Lett. 2005, 46: 739 - 8i 
             
            
Kandula SRV.Kumar P. Tetrahedron: Asymmetry 2005, 16: 3579 - 8j 
             
            
Oshitari T.Mandai T. Synlett 2006, 3395 - 8k 
             
            
Cherian SK.Kumar P. Tetrahedron: Asymmetry 2007, 18: 892 - 8l 
             
            
Emmanuvel L.Sudalai A. Tetrahedron Lett. 2008, 49: 5736 - 8m 
             
            
Liu R.-H.Fang K.Wang B.Xu M.-H.Lin G.-Q. J. Org. Chem. 2008, 73: 3307 - For synthesis of (-)-L-733,061, see:
 - 8n 
             
            
Liu L.-X.Ruan Y.-P.Guo Z.-Q.Huang P.-Q. J. Org. Chem. 2004, 69: 6001 - 8o 
             
            
Takahashi K.Nakano H.Fujita R. Tetrahedron Lett. 2005, 46: 8927 - 9 For synthesis of II,
            see:  
            
Kulagowski JJ.Curtis NR.Swain CJ.Williams BJ. Org. Lett. 2001, 3: 667 - For the synthesis of 3-hydroxypipecolic acids, see:
 - 10a 
             
            
Roemmele RC.Rapoport H. J. Org. Chem. 1989, 54: 1866 - 10b 
             
            
Drummond J.Johnson G.Nickell DG.Ortwine DF.Bruns RF.Welbaum B. J. Med. Chem. 1989, 32: 2116 - 10c 
             
            
Agami C.Couty F.Mathieu H. Tetrahedron Lett. 1996, 37: 4001 - 10d 
             
            
Greck C.Ferreira F.Genêt J.-P. Tetrahedron Lett. 1996, 37: 2031 - 10e 
             
            
Makara GM.Marshall GR. Tetrahedron Lett. 1997, 38: 5069 - 10f 
             
            
Battistini L.Zanardi F.Rassu G.Spanu P.Pelosi G.Gasparri Fava G.Belicchi Ferrari M.Casiraghi G. Tetrahedron: Asymmetry 1997, 8: 2975 - 10g 
             
            
Sugisaki CH.Carroll PJ.Correira CRD. Tetrahedron Lett. 1998, 39: 3413 - 10h 
             
            
Scott JD.Tippie TN.Williams RM. Tetrahedron Lett. 1998, 39: 3659 - 10i 
             
            
Shibasaki T.Sakurai W.Hasegawa A.Uosaki Y.Mori H.Yoshida M.Ozaki A. Tetrahedron Lett. 1999, 40: 5227 - 10j 
             
            
Horikawa M.Busch-Petersen J.Corey EJ. Tetrahedron Lett. 1999, 40: 3843 - 10k 
             
            
Jourdant A.Zhu J. Tetrahedron Lett. 2000, 41: 7033 - 10l 
             
            
Scott JD.Williams RM. Tetrahedron Lett. 2000, 41: 8413 - 10m 
             
            
Quibell M.Benn A.Flinn N.Monk T.Ramjee M.Wang Y.Watts J. Bioorg. Med. Chem. 2004, 12: 5689 - 10n 
             
            
Bodas MS.Kumar P. Tetrahedron Lett. 2004, 45: 8461 - 10o 
             
            
Kumar P.Bodas MS. J. Org. Chem. 2005, 70: 360 - 10p 
             
            
Kim IS.Ji YJ.Jung YH. Tetrahedron Lett. 2006, 47: 7289 - 10q 
             
            
Kim IS.Oh JS.Zee OP.Jung YH. Tetrahedron 2007, 63: 2622 - 10r 
             
            
Takahashi R.Miyagawa T.Yoshimura Y.Kato A.Adachi I.Takahata H. Bioorg. Med. Chem. 2008, 18: 1810 - 10s 
             
            
Alegret C.Ginesta X.Riera A. Eur. J. Org. Chem. 2008, 1789 - 10t 
             
            
Liu L.-X.Peng Q.-L.Huang P.-Q. Tetrahedron: Asymmetry 2008, 19: 1200 - 10u 
             
            
Kalamkar NB.Kasture VM.Dhavale DD. J. Org. Chem. 2008, 73: 3619 - 10v 
             
            
Pham V.-T.Joo J.-E.Tian Y.-S.Chung Y.-S.Lee K.-Y.Oh C.-Y.Ham W.-H. Tetrahedron: Asymmetry 2008, 19: 318 - For comprehensive reviews, see:
 - 11a 
             
            
Cossy J.Gomez Pardo D. Chemtracts 2002, 15: 579 - 11b 
             
            
Cossy J.Gomez Pardo D. Targets in Heterocyclic Systems Vol. 6:Attanasi OA.Spinelli D. Italian Society of Chemistry; Rome: 2002. p.1 - 12a 
             
            
Cossy J.Dumas C.Michel P.Gomez Pardo D. Tetrahedron Lett. 1995, 36: 549 - 12b 
             
            
Cossy J.Dumas C.Gomez Pardo D. Synlett 1997, 905 - 12c 
             
            
Cossy J.Dumas C.Gomez Pardo D. Bioorg. Med. Chem. Lett. 1997, 7: 1343 - 12d 
             
            
Wilken J.Kossenjans M.Saak W.Haase D.Pohl S.Martens J. Liebigs Ann./Recl. 1997, 573 - 12e 
             
            
Langlois N.Calvez O. Synth. Commun. 1998, 28: 4471 - 12f 
             
            
Davis PW.Osgood SA.Hébert N.Sprankle KG.Swayze EE. Biotechnol. Bioeng. 1999, 61: 143 - 12g 
             
            
Cossy J.Dumas C.Gomez Pardo D. Eur. J. Org. Chem. 1999, 1693 - 12h 
             
            
Michel P.Rassat A. J. Org. Chem. 2000, 65: 2572 - 12i 
             
            
Cossy J.Mirguet O.Gomez Pardo D. Synlett 2001, 1575 - 12j 
             
            
Brandi A.Cicchi S.Paschetta V.Gomez Pardo D.Cossy J. Tetrahedron Lett. 2002, 43: 9357 - 12k 
             
            
Deyine A.Delcroix J.-M.Langlois N. Heterocycles 2004, 64: 207 - 12l 
             
            
Déchamps I.Gomez Pardo D.Karoyan P.Cossy J. Synlett 2005, 1170 - 12m 
             
            
Roudeau R.Gomez Pardo D.Cossy J. Tetrahedron 2006, 62: 2388 - 12n 
             
            
Mena M.Bonjoch J.Gomez Pardo D.Cossy J. J. Org. Chem. 2006, 71: 5930 - 12o 
             
            
Déchamps I.Gomez Pardo D.Cossy J. ARKIVOC 2007, (v): 38 - 12p 
             
            
Déchamps I.Gomez Pardo D.Cossy J. Tetrahedron 2007, 63: 9082 - 12q 
             
            
Métro T.-X.Gomez Pardo D.Cossy J. J. Org. Chem. 2007, 72: 6556 - 12r 
             
            
Métro T.-X.Gomez Pardo D.Cossy J. Synlett 2007, 2888 - 12s 
             
            
Cossy J.Gomez Pardo D.Dumas C.Mirguet O.Déchamps I.Métro T.-X.Burger B.Roudeau R.Appenzeller J.Cochi A. Chirality 2009, in press - 13a 
             
            
Bilke JL.Moore SP.O’Brien P.Gilday J. Org. Lett. 2009, 11: 1935 - 13b  
            
O’Brien et al. (ref 13a) have shown that the ring expansion of substituted pyrrolidinols 2b and 3b using TFAA (1.5 equiv), Et3N (3 equiv), in refluxing THF for 48 h, led to the ring-expanded compounds.
 - 14a 
             
            
Ibuka T.Habashita H.Otaka A.Fujii N.Ogushi Y.Uyehara T.Yamamoto Y. J. Org. Chem. 1991, 56: 4370 - 14b 
             
            
Ito H.Ikeuchi Y.Taguchi T.Hanzawa Y.Shiro M. J. Am. Chem. Soc. 1994, 116: 5469 - 14c 
             
            
Zhao Y. Master"s Thesis University of Pittsburgh; Pittsburgh: 2005; http://etd.library.pitt.edu/ETD/available/etd-12072005-173655/ - 14d  
            
The excellent diastereoselectivity in the DIBAL-H/Grignard sequence was probably due to catalysis of the conversion of R2 to R1 (Scheme [³] ) due to the presence of MgBr2 in the Grignard reagent, whereas ZnCl2 or heat was used for this purpose in Ref. 14c
 - 17 Langlois et al. have shown that
            the ring expansion of substituted pyrrolidinols 3b using
            TFAA (1.5 equiv), Et3N (3 equiv), in refluxing THF for
            44 h, led to the ring-expanded compound 5 in
            22% yield, together with the starting material, see:  
            
Calvez O.Chiaroni A.Langlois N. Tetrahedron Lett. 1998, 39: 9447 - 18 For a related rearrangement under
            different conditions, see:  
            
Lee J.Hoang T.Lewis S.Weissman SA.Askin D.Volante RP.Reider PJ. Tetrahedron Lett. 2001, 42: 6223 - 19a 
             
            
Liu L.-X.Ruan Y.-P.Guo Z.-Q.Huang P.-Q. J. Org. Chem. 2004, 69: 6001 - 19b 
             
            
Takahashi K.Nakano H.Fujita R. Tetrahedron Lett. 2005, 46: 8927 - 20a 
             
            
Calvez O.Langlois N. Tetrahedron Lett. 1999, 40: 7099 - 20b 
             
            
Calvez O. PhD Dissertation Université Paris XI Orsay; France: 2001. - 21 
             
            
Haddad M.Larchevêque M. Tetrahedron: Asymmetry 1999, 10: 4231 
References and Notes
         Ester reduction/alkylation
            method: DIBAL-H (1.0 M in hexane, 2.61 mL, 2.61 mmol, 1.2 equiv)
         was added to a solution of N-benzylproline
         ethyl ester (500 mg, 2.17 mmol, 1 equiv) in CH2Cl2 (10
         mL) at -78 ˚C. The resulting solution was
         stirred at -78 ˚C for 30 min, followed
         by the addition of commercially available PhMgBr (1.0 M in THF,
         6.52 mL, 6.52 mmol, 3 equiv) dropwise at -78 ˚C.
         The solution was then allowed to slowly warm to r.t. overnight.
         Sat. aq NH4Cl (10 mL) was added to quench the reaction.
         Sat. sodium tartrate solution (10 mL) was added to the resulting
         gel. The mixture was stirred at r.t. for 30 min, then the organic
         layer was extracted with CH2Cl2 (3 × 15
         mL). The combined organic layers were dried over anhydrous MgSO4 and concentrated
         in vacuo to give a separable mixture of diastereomers 2b and 3b, which
         was purified by flash chromatography (SiO2; EtOAc-PE,
         8:2) to give 2b as a yellow solid (155
         mg, 27.5%) and 3b as a pale-yellow
         oil (155 mg, 27.5%).
         Compound
            2b:
         ¹7,²0b R
         
            f
             = 0.1
         (EtOAc-PE, 8:2); mp 93-95 ˚C; [α]D
         ²0 +106
         (c 1.1, CHCl3). IR (neat):
         3017, 1495, 1454 cm-¹. ¹H
         NMR (CDCl3, 400 MHz): δ = 7.43-7.20
         (m, 10 H), 4.39 (d, J = 5.2
         Hz, 1 H), 3.67 (d, J = 13.0
         Hz, 1 H), 3.34 (d, J = 13.0
         Hz, 1 H), 3.08 (m, 1 H), 2.96 (m, 1 H),
         2.40 (m, 1 H), 1.94 (m, 1 H), 1.80-1.71
         (m, 3 H). ¹³C NMR (CDCl3,
         100 MHz): δ = 143.8 (s), 139.5 (s), 128.8 (d),
         128.7 (d), 128.6 (d), 128.4 (d), 128.4 (d), 128.3 (d), 128.3 (d), 127.1
         (d), 127.0 (d), 126.2 (d), 75.3 (d), 70.2 (d), 61.2 (t), 54.3 (t),
         29.4 (t), 24.3 (t). MS: m/z (%) = 160 (100)[M+˙ - CHOHPh˙],
         91 (71) [PhCH2
         +].
         Compound 3b:
         ¹7,²0b R
         
            f
             = 0.2
         (EtOAc-PE, 8:2); [α]D
         ²0 -54
         (c 1, CHCl3). IR (neat): 3620,
         2940, 2820, 1496, 1457 cm-¹. ¹H NMR
         (CDCl3, 400 MHz): δ = 7.41-7.19
         (m, 10 H), 4.89 (d, J = 3.1
         Hz, 1 H), 4.18 (d, J = 12.7
         Hz, 1 H), 3.46 (d, J = 12.7 Hz,
         1 H), 3.05 (m, 1 H), 2.89 (m, 1 H), 2.33
         (dd, J = 17,
         8.1 Hz, 1 H), 1.73 (m, 1 H), 1.65-1.56
         (m, 2 H), 1.32 (m, 1 H). ¹³C
         NMR (CDCl3, 100 MHz): δ = 141.5 (s),
         139.1 (s), 128.8 (d), 128.6 (d), 128.4 (d), 128.3 (d), 128.1 (d),
         127.6 (d),  127.2 (d), 127.0 (d), 126.8 (d), 125.5 (d), 70.2 (d),
         69.2 (d), 58.3 (t), 54.7 (t), 24.0 (t), 23.2 (t). MS: m/z (%) = 160 (100)[M+˙ - CHOHPh˙],
         91 (71) [PhCH2
         +].
         General procedure
            for the ring expansion of pyrrolidines to piperidines: Trifluoroacetic
         anhydride (3-4 equiv) was added to a stirred solution of N-alkyl pyrrolidine (1 equiv) in THF
         under argon at r.t. and Et3N (4-7 equiv) was
         added. The solution was stirred and heated at 100 ˚C
         for 3 h under microwave irradiation. The resulting solution was
         cooled to r.t. and a solution of aqueous 3.75 M NaOH was added.
         After stirring for 30 min, EtOAc was added and the two layers were
         separated. The aqueous layer was extracted with EtOAc and the combined
         organic layers were dried over anhydrous MgSO4 and evaporated
         under reduced pressure to give the crude product. 
            Compound
            4: Chromatography (SiO2; EtOAc-PE, 7:3), R
         
            f
             = 0.33
         (EtOAc-PE, 7:3); ee >99% determined by supercritical
         fluid chromatography on Daicel Chiralpak OD-H column (MeOH 5%,
         flow rate 5 mL/min, t = 3.94
         min); [α]D
         ²0 -25
         (c 1.15, CHCl3). IR (neat):
         3588, 3016, 2946, 1493, 1454 cm-¹. ¹H
         NMR (CDCl3, 400 MHz): δ = 7.51-7.19
         (m, 10 H), 3.87 (d, J = 13.6
         Hz, 1 H), 3.74 (m, 1 H), 3.34 (d, J = 1.7 Hz,
         1 H), 3.0 (m, 1 H), 2.88 (d, J = 13.6
         Hz, 1 H), 2.05-1.89 (m, 3 H), 1.61 (m,
         1 H), 1.47 (m, 1 H). ¹³C NMR
         (CDCl3, 100 MHz): δ = 141.1 (s), 139.1
         (s), 128.7 (d), 128.6 (d), 128.5 (d), 128.4 (d), 128.3 (d), 128.2
         (d), 128.1 (d), 128.0 (d), 127.4 (d), 126.6 (d), 73.9 (d), 72.4
         (d), 59.4 (t), 53.4 (t), 31.3 (t), 19.9 (t). MS: m/z (%) = 267
         (3)[M+˙], 266 (3),
         222 (15), 210 (6), 194 (15), 177 (13), 176 (100) [M+˙ - PhCH2
         
            ˙
            ], 106 (10), 91
         (52) [PhCH2
         +]. 
         Compound 5:
         ¹7,²0b
          Chromatography (SiO2; EtOAc-PE, 8:2), R
         
            f
             = 0.2
         (EtOAc-PE, 8:2); ee >99% determined by supercritical
         fluid chromatography on Daicel Chiralpak OD-H column (MeOH 5%,
         flow rate 5 mL/min, t = 4.14
         min); mp 139-141 ˚C; [α]D
         ²0 +27
         (c 1, CHCl3). IR (neat): 3588, 3016,
         2946, 1493, 1454 cm-¹. ¹H
         NMR (CDCl3, 400 MHz): δ = 7.55-7.14
         (m, 10 H), 3.66 (d, J = 13.6
         Hz, 1 H), 3.59 (m, 1 H), 2.91 (d, J = 8.6 Hz,
         1 H), 2.89 (m, 1 H), 2.83 (d, J = 13.6
         Hz, 1 H), 2.09 (m, 1 H), 1.93 (m, 1 H),
         1.70-1.60 (m, 2 H), 1.38 (m, 1 H). ¹³C
         NMR (CDCl3, 100 MHz): δ = 141.1 (s),
         139.6 (s), 128.8 (d), 128.7 (d), 128.6 (d), 128.2 (d), 128.1 (d),
         127.9 (d), 127.8 (d), 127.6 (d), 126.9 (d), 126.7 (d), 76.0 (d),
         73.9 (d), 59.3 (t), 52.4 (t), 32.5 (t), 23.3 (t). MS: 
         m/z (%) = 267
         (3)[M+˙], 266 (3),
         222 (15), 210 (6), 194 (15), 177 (13), 176 (100) [M+˙ - PhCH2
         
            ˙
            ], 106 (10), 91
         (52) [PhCH2
         +].