Synlett 2009(14): 2249-2252  
DOI: 10.1055/s-0029-1217719
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Mild Protocol for the Efficient Synthesis of 5,6-Unsubstituted 1,4-Dihydropyridines

Swarupananda Maiti, J. Carlos Menéndez*
Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
Fax: +34(91)3941822; e-Mail: josecm@farm.ucm.es;
Further Information

Publication History

Received 30 April 2009
Publication Date:
29 July 2009 (online)

Abstract

Treatment of 6-alkoxy-1,4,5,6-tetrahydropyridines with neutral alumina (activity grade I) suspended in refluxing aceto­nitrile, afforded 1,4-dihydropyridines in excellent yields. This method allowed the efficient synthesis of 5,6-unsubstituted dihydropyridines, which are difficult to prepare by traditional methods, from acyclic and readily available precursors.

    References and Notes

  • For some applications of the ‘privileged scaffold’ concept in drug design, see:
  • 1a Muller G. Drug Discovery Today  2003,  8:  681 
  • 1b DeSimone RW. Currie KS. Mitchell SA. Darrow JW. Pippin DA. Comb. Chem. High Throughput Screening  2004,  7:  473 
  • 1c Costantino L. Barlocco D. Curr. Med. Chem.  2006,  13:  65 
  • 1d Shelat AA. Kiplin Guy R. Nature Chem. Biol.  2007,  3:  442 
  • 2 Evans BE. Rittle KE. Bock MG. DiPardo RM. Freidinger RM. Whitter WL. Lundell GF. Verber DF. Anderson PS. Chang RSL. Lotti VJ. Cerino DH. Chen TB. Kling PJ. Kunkel KA. Springer JP. Hirshfield J. J. Med. Chem.  1998,  31:  2235 
  • For selected reviews, see:
  • 3a Triggle DJ. Cell. Mol. Neurobiol.  2003,  23:  293 
  • 3b Ohashi K. Ebihara A. Cardiovasc. Drug Rev.  2007,  14:  1 
  • 3c Epstein BJ. Vogel K. Palmer BF. Drugs  2007,  67:  1309 
  • 3d Fagard RH. J. Clin. Basic Cardiol.  1999,  2:  163 
  • 4 Vergouwen MD. Vermeulen M. de Haan RJ. Levi M. Roos YB. J. Cereb. Blood Flow Metab.  2007,  27:  1293 
  • 5 Straub T. Boesenberg C. Gekeler V. Boege F. Biochemistry  1997,  36:  10777 
  • 6 Donkor IO. Zhou X. Schmidt J. Agrawal KC. Kishore V. Bioorg. Med. Chem.  1998,  6:  563 
  • 7 Kuzmin A. Semenova S. Ramsey NF. Zvartau EE. Van Ree JM. Eur. J. Pharmacol.  1996,  295:  19 
  • For selected reviews on MDR modulators, see:
  • 8a Teodori E. Dei S. Scapecchi S. Gualtieri F. Farmaco  2002,  57:  385 
  • 8b Avendaño C. Menéndez JC. Curr. Med. Chem.  2002,  9:  159 
  • 8c Robert J. Jarry C. J. Med. Chem.  2003,  46:  4805 
  • 8d Avendaño C. Menéndez JC. Med. Chem. Rev. Online  2004,  1:  419 
  • 8e Boumendjel A. Baubichon-Cortay H. Trompier D. Perrotton T. Di Pietro A. Med. Res. Rev.  2005,  25:  453 
  • 9a Hilgeroth A. Mini-Rev. Med. Chem.  2002,  2:  235 
  • 9b Hilgeroth A. Lilie H. Eur. J. Med. Chem.  2003,  38:  495 
  • 10a Misra A. Ganesh S. Shahiwala A. Shah SP. J. Pharm. Pharm. Sci.  2003,  6:  252 
  • 10b Bodor N. Buchwald P. Drug Discovery Today  2002,  7:  766 
  • 10c Prokai L. Prokai-Tatrai K. Bodor N. Med. Res. Rev.  2000,  20:  367 
  • For reviews of the chemistry of 1,4-dihydropyridines, see:
  • 11a Comins DL. O’Connor S. Adv. Heterocycl. Chem.  1988,  44:  199 
  • 11b Kumar R. Chandra R. Adv. Heterocycl. Chem.  2001,  78:  269 
  • 11c Lavilla R. J. Chem. Soc., Perkin Trans. 1  2002,  1141 
  • 11d Christen DP. The Art of Drug Synthesis   Johnson DS. Li JJ. John Wiley and Sons; New York: 2007.  Chap. 11.
  • 12a For a review of the synthesis of substituted pyridines, see: Henry GD. Tetrahedron  2004,  60:  6043 
  • 12b For an overview of more recent methods, see: Lieby-Muller F. Allais C. Constantieux T. Rodriguez J. Chem. Commun.  2008,  4207 ; and references therein
  • 13 For a review of the use of 1,3-dicarbonyl compounds in multicomponent processes, including the Hantzsch reaction, see: Simon C. Constantieux T. Rodríguez J. Eur. J. Org. Chem.  2004,  4957 
  • For some dihydropyridine syntheses not directly related to the Hantzsch reaction, see:
  • 14a Geirsson JKF. Johannesdottir JF. J. Org. Chem.  1996,  61:  7320 
  • 14b Evdokimov NM. Magedov IV. Kireev AS. Kornienko A. Org. Lett.  2006,  6:  899 
  • 14c Sridharan V. Perumal PT. Avendaño C. Menéndez JC. Tetrahedron  2007,  63:  4407 ; for organocatalyzed versions of the same reaction, see references 14g and 14h
  • 14d Bartoli G. Babiuch K. Bosco M. Carlone A. Galzerano P. Melchiorre P. Sambri L. Synlett  2007,  2897 
  • 14e Singh L. Singh Ishar MP. Elango M. Subramanian V. Gupta V. Kanwal VP. J. Org. Chem.  2008,  73:  2224 
  • 14f Li M. Zuo Z. Wen L. Wang S. J. Comb. Chem.  2008,  10:  436 
  • 14g Franke PT. Johansen RL. Bertelsen S. Jørgensen KA. Chem. Asian J.  2008,  3:  216 
  • 14h Kumar A. Maurya RA. Tetrahedron  2008,  64:  3477 
  • For some recent improvements of the Hantzsch dihydropyridine synthesis, see:
  • 15a Vanden Eynde JJ. Mayence A. Molecules  2003,  8:  381 
  • 15b Kidwai M. Mohan R. Can. J. Chem.  2004,  82:  427 
  • 15c Sharma GVM. Reddy KL. Lakshmi PS. Krishna PR. Synthesis  2006,  55 
  • 15d Kumar A. Maurya RA. Tetrahedron  2007,  63:  1946 
  • 15e Wang S.-X. Li Z.-Y. Zhang J.-C. Li J.-T. Ultrason. Sonochem.  2008,  15:  677 
  • 15f Arumugan P. Perumal PT. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  2008,  47:  1084 
  • For some recent examples of the use of this strategy, see:
  • 16a Carranco I. Díaz JL. Jiménez O. Lavilla R. Tetrahedron Lett.  2003,  44:  8449 
  • 16b Lavilla R. Bernabeu MC. Carranco I. Díaz JL. Org. Lett.  2003,  5:  717 
  • 16c Lavilla R. Carranco I. Díaz JL. Bernabeu MC. Mol. Diversity  2003,  6:  171 
  • 16d Jiménez O. de la Rosa G. Lavilla R. Angew. Chem. Int. Ed.  2005,  44:  6521 
  • 16e Masdeu C. Gómez E. Williams NAO. Lavilla R. Angew. Chem. Int. Ed.  2007,  46:  3043 
  • See, for instance:
  • 17a Zhu XQ. Zhao BJ. Cheng JP.
    J. Org. Chem.  2000,  65:  8158 
  • 17b Zhu XQ. Wang HY. Wang JS. Liu YC. J. Org. Chem.  2001,  66:  344 
  • 18 Sridharan V. Maiti S. Menéndez JC. Chem. Eur. J.  2009,  15:  4565 
19

General experimental procedure: To a solution of a suitable primary amine (1.1 mmol) and β-keto ester (1 mmol) in anhydrous MeCN (5 mL) was added CAN (5 mol%). The solution was stirred at room temperature for 30 minutes. To this solution was added a suitable α,β-unsaturated aldehyde (1.1 mmol) in EtOH (3 mmol). The reaction mixture was stirred at room temperature for 1 h, diluted with CH2Cl2
(15 mL) and washed with water (3 × 5 mL). The organic layer was dried over anhydrous Na2SO4 and concentrated to dryness. The crude residue was dissolved in MeCN (10 mL) and neutral, grade I activity Al2O3 (5 g) was added. The suspension was heated under reflux for the time specified in Table  [²] . After completion of the reaction (verified by NMR), the mixture was diluted with CH2Cl2 and filtered through a layer of Celite, which was thoroughly washed with boiling CH2Cl2 (50 mL, in several portions). The organic layer was washed with water (5 mL), dried over anhydrous Na2SO4 and concentrated to dryness. The crude residue was purified by column chromatography on neutral Al2O3 (EtOAc-petroleum ether, 98:2 containing 1% Et3N). Characterization data for representative compounds 2 are given below.
Ethyl 1-Butyl-2-methyl-1,4-dihydropyridine-3-carboxylate (2a). Colorless viscous liquid. IR (neat, NaCl): 2960, 2932, 2874, 1681, 1567, 1233, 1178, 1145, 1073 cm. ¹H NMR (250 MHz, CDCl3): δ = 0.92 (t, J = 7.2 Hz, 3 H), 1.23 (t, J = 7.1 Hz, 3 H), 1.29-1.38 (m, 2 H), 1.44-1.56 (m, 2 H), 2.31 (s, 3 H), 3.1 (d, J = 3.5 Hz, 2 H), 3.2 (t, J = 7.2 Hz, 2 H), 4.05-4.13 (m, 2 H), 4.68-4.75 (m, 1 H), 5.67 (d, J = 7.9 Hz, 1 H). ¹³C NMR (62.9 MHz, CDCl3): δ = 14.3, 14.9, 15.8, 20.3, 24.9, 32.7, 50.2, 59.6, 94.9, 104.2, 130.9, 150.9, 169.6. Anal. Calcd for C13H21NO2 (223.3): C, 69.92; H, 9.48; N, 6.27; Found: C, 69.65; H, 9.23; N, 6.12.
Ethyl 1-Butyl-2,4-dimethyl-1,4-dihydropyridine-3-carboxylate (2e). Colorless viscous liquid. IR (neat, NaCl): 2958, 2930, 2872, 1684, 1560, 1232, 1177, 1137, 1088
cm. ¹H NMR (250 MHz, CDCl3): δ = 0.92-0.98 (m, 6 H), 1.27 (t, J = 6.4 Hz, 3 H), 1.33-1.42 (m, 2 H), 1.48-1.59 (m, 2 H), 2.38 (s, 3 H), 3.11-3.23 (m, 1 H), 3.32-3.52 (m, 2 H), 4.07-4.20 (m, 2 H), 4.87 (dd, J = 7.4, 6.2 Hz, 1 H), 5.81 (d, J = 7.4 Hz, 1 H). ¹³C NMR (62.9 MHz, CDCl3): δ = 14.3, 14.9, 16.0, 20.2, 25.3, 28.5, 32.8, 50.2, 59.5, 101.0, 109.2, 129.6, 149.3, 169.7. Anal. Calcd for C14H23NO2 (237.3): C, 70.85; H, 9.77; N, 5.90. Found: C, 70.57; H, 9.50; N, 6.00.
Ethyl 1-Butyl-2-methyl-4-phenyl-1,4-dihydropyridine-3-carboxylate (2k). Light-yellow viscous liquid. IR (neat, NaCl): 2959, 2872, 1682, 1557, 1393, 1230, 1178, 1145, 1078 cm. ¹H NMR (250 MHz, CDCl3): δ = 0.99 (t, J = 7.3 Hz, 3 H), 1.13 (t, J = 7.1 Hz, 3 H), 1.31-1.46 (m, 2 H), 1.55-1.68 (m, 2 H), 2.49 (s, 3 H), 3.21-3.32 (m, 1 H), 3.44-3.56 (m, 1 H), 3.99 (q, J = 7.1 Hz, 2 H), 4.60 (d, J = 5.6 Hz, 1 H), 4.96 (dd, J = 5.6, 7.5 Hz, 1 H), 5.91 (d, J = 7.6 Hz, 1 H), 7.15-7.55 (m, 5 H). ¹³C NMR (62.9 MHz, CDCl3): δ = 14.3, 14.7, 16.2, 20.1, 32.7, 40.5, 50.4, 59.5, 99.9, 108.2, 126.3, 127.7 (2 × C), 128.6 (2 × C), 129.3, 149.1, 149.7, 169.6. Anal. Calcd for C19H25NO2 (299.4): C, 76.22; H, 8.42; N, 4.68. Found: C, 75.98; H, 8.31; N, 4.23.