Subscribe to RSS
DOI: 10.1055/s-0029-1217719
A Mild Protocol for the Efficient Synthesis of 5,6-Unsubstituted 1,4-Dihydropyridines
Publication History
Publication Date:
29 July 2009 (online)
Abstract
Treatment of 6-alkoxy-1,4,5,6-tetrahydropyridines with neutral alumina (activity grade I) suspended in refluxing acetonitrile, afforded 1,4-dihydropyridines in excellent yields. This method allowed the efficient synthesis of 5,6-unsubstituted dihydropyridines, which are difficult to prepare by traditional methods, from acyclic and readily available precursors.
Key words
eliminations - heterocycles - dihydropyridines - cerium(IV) - Lewis acids
- For some applications of the ‘privileged scaffold’ concept in drug design, see:
-
1a
Muller G. Drug Discovery Today 2003, 8: 681 -
1b
DeSimone RW.Currie KS.Mitchell SA.Darrow JW.Pippin DA. Comb. Chem. High Throughput Screening 2004, 7: 473 -
1c
Costantino L.Barlocco D. Curr. Med. Chem. 2006, 13: 65 -
1d
Shelat AA.Kiplin Guy R. Nature Chem. Biol. 2007, 3: 442 - 2
Evans BE.Rittle KE.Bock MG.DiPardo RM.Freidinger RM.Whitter WL.Lundell GF.Verber DF.Anderson PS.Chang RSL.Lotti VJ.Cerino DH.Chen TB.Kling PJ.Kunkel KA.Springer JP.Hirshfield J. J. Med. Chem. 1998, 31: 2235 - For selected reviews, see:
-
3a
Triggle DJ. Cell. Mol. Neurobiol. 2003, 23: 293 -
3b
Ohashi K.Ebihara A. Cardiovasc. Drug Rev. 2007, 14: 1 -
3c
Epstein BJ.Vogel K.Palmer BF. Drugs 2007, 67: 1309 -
3d
Fagard RH. J. Clin. Basic Cardiol. 1999, 2: 163 - 4
Vergouwen MD.Vermeulen M.de Haan RJ.Levi M.Roos YB. J. Cereb. Blood Flow Metab. 2007, 27: 1293 - 5
Straub T.Boesenberg C.Gekeler V.Boege F. Biochemistry 1997, 36: 10777 - 6
Donkor IO.Zhou X.Schmidt J.Agrawal KC.Kishore V. Bioorg. Med. Chem. 1998, 6: 563 - 7
Kuzmin A.Semenova S.Ramsey NF.Zvartau EE.Van Ree JM. Eur. J. Pharmacol. 1996, 295: 19 - For selected reviews on MDR modulators, see:
-
8a
Teodori E.Dei S.Scapecchi S.Gualtieri F. Farmaco 2002, 57: 385 -
8b
Avendaño C.Menéndez JC. Curr. Med. Chem. 2002, 9: 159 -
8c
Robert J.Jarry C. J. Med. Chem. 2003, 46: 4805 -
8d
Avendaño C.Menéndez JC. Med. Chem. Rev. Online 2004, 1: 419 -
8e
Boumendjel A.Baubichon-Cortay H.Trompier D.Perrotton T.Di Pietro A. Med. Res. Rev. 2005, 25: 453 -
9a
Hilgeroth A. Mini-Rev. Med. Chem. 2002, 2: 235 -
9b
Hilgeroth A.Lilie H. Eur. J. Med. Chem. 2003, 38: 495 -
10a
Misra A.Ganesh S.Shahiwala A.Shah SP. J. Pharm. Pharm. Sci. 2003, 6: 252 -
10b
Bodor N.Buchwald P. Drug Discovery Today 2002, 7: 766 -
10c
Prokai L.Prokai-Tatrai K.Bodor N. Med. Res. Rev. 2000, 20: 367 - For reviews of the chemistry of 1,4-dihydropyridines, see:
-
11a
Comins DL.O’Connor S. Adv. Heterocycl. Chem. 1988, 44: 199 -
11b
Kumar R.Chandra R. Adv. Heterocycl. Chem. 2001, 78: 269 -
11c
Lavilla R. J. Chem. Soc., Perkin Trans. 1 2002, 1141 -
11d
Christen DP. The Art of Drug SynthesisJohnson DS.Li JJ. John Wiley and Sons; New York: 2007. Chap. 11. -
12a For
a review of the synthesis of substituted pyridines, see:
Henry GD. Tetrahedron 2004, 60: 6043 -
12b For an overview of more
recent methods, see:
Lieby-Muller F.Allais C.Constantieux T.Rodriguez J. Chem. Commun. 2008, 4207 ; and references therein - 13 For a review of the use of 1,3-dicarbonyl
compounds in multicomponent processes, including the Hantzsch reaction, see:
Simon C.Constantieux T.Rodríguez J. Eur. J. Org. Chem. 2004, 4957 - For some dihydropyridine syntheses not directly related to the Hantzsch reaction, see:
-
14a
Geirsson JKF.Johannesdottir JF. J. Org. Chem. 1996, 61: 7320 -
14b
Evdokimov NM.Magedov IV.Kireev AS.Kornienko A. Org. Lett. 2006, 6: 899 -
14c
Sridharan V.Perumal PT.Avendaño C.Menéndez JC. Tetrahedron 2007, 63: 4407 ; for organocatalyzed versions of the same reaction, see references 14g and 14h -
14d
Bartoli G.Babiuch K.Bosco M.Carlone A.Galzerano P.Melchiorre P.Sambri L. Synlett 2007, 2897 -
14e
Singh L.Singh Ishar MP.Elango M.Subramanian V.Gupta V.Kanwal VP. J. Org. Chem. 2008, 73: 2224 -
14f
Li M.Zuo Z.Wen L.Wang S. J. Comb. Chem. 2008, 10: 436 -
14g
Franke PT.Johansen RL.Bertelsen S.Jørgensen KA. Chem. Asian J. 2008, 3: 216 -
14h
Kumar A.Maurya RA. Tetrahedron 2008, 64: 3477 - For some recent improvements of the Hantzsch dihydropyridine synthesis, see:
-
15a
Vanden Eynde JJ.Mayence A. Molecules 2003, 8: 381 -
15b
Kidwai M.Mohan R. Can. J. Chem. 2004, 82: 427 -
15c
Sharma GVM.Reddy KL.Lakshmi PS.Krishna PR. Synthesis 2006, 55 -
15d
Kumar A.Maurya RA. Tetrahedron 2007, 63: 1946 -
15e
Wang S.-X.Li Z.-Y.Zhang J.-C.Li J.-T. Ultrason. Sonochem. 2008, 15: 677 -
15f
Arumugan P.Perumal PT. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2008, 47: 1084 - For some recent examples of the use of this strategy, see:
-
16a
Carranco I.Díaz JL.Jiménez O.Lavilla R. Tetrahedron Lett. 2003, 44: 8449 -
16b
Lavilla R.Bernabeu MC.Carranco I.Díaz JL. Org. Lett. 2003, 5: 717 -
16c
Lavilla R.Carranco I.Díaz JL.Bernabeu MC. Mol. Diversity 2003, 6: 171 -
16d
Jiménez O.de la Rosa G.Lavilla R. Angew. Chem. Int. Ed. 2005, 44: 6521 -
16e
Masdeu C.Gómez E.Williams NAO.Lavilla R. Angew. Chem. Int. Ed. 2007, 46: 3043 - See, for instance:
-
17a
Zhu XQ.Zhao BJ.Cheng JP.
J. Org. Chem. 2000, 65: 8158 -
17b
Zhu XQ.Wang HY.Wang JS.Liu YC. J. Org. Chem. 2001, 66: 344 - 18
Sridharan V.Maiti S.Menéndez JC. Chem. Eur. J. 2009, 15: 4565
References and Notes
General experimental procedure: To
a solution of a suitable primary amine (1.1 mmol) and β-keto
ester (1 mmol) in anhydrous MeCN (5 mL) was added CAN (5 mol%).
The solution was stirred at room temperature for 30 minutes. To this
solution was added a suitable α,β-unsaturated
aldehyde (1.1 mmol) in EtOH (3 mmol). The reaction mixture was stirred
at room temperature for 1 h, diluted with CH2Cl2
(15
mL) and washed with water (3 × 5 mL). The organic layer
was dried over anhydrous Na2SO4 and concentrated
to dryness. The crude residue was dissolved in MeCN (10 mL) and
neutral, grade I activity Al2O3 (5 g) was
added. The suspension was heated under reflux for the time specified
in Table
[²]
. After
completion of the reaction (verified by NMR), the mixture was diluted
with CH2Cl2 and filtered through a layer of
Celite, which was thoroughly washed with boiling CH2Cl2 (50
mL, in several portions). The organic layer was washed with water
(5 mL), dried over anhydrous Na2SO4 and concentrated
to dryness. The crude residue was purified by column chromatography
on neutral Al2O3 (EtOAc-petroleum
ether, 98:2 containing 1% Et3N). Characterization data
for representative compounds 2 are given
below.
Ethyl 1-Butyl-2-methyl-1,4-dihydropyridine-3-carboxylate
(2a). Colorless viscous liquid. IR
(neat, NaCl): 2960, 2932, 2874, 1681, 1567, 1233, 1178, 1145, 1073
cm-¹. ¹H NMR (250
MHz, CDCl3): δ = 0.92 (t, J = 7.2 Hz,
3 H), 1.23 (t, J = 7.1
Hz, 3 H), 1.29-1.38 (m, 2 H), 1.44-1.56
(m, 2 H), 2.31 (s, 3 H), 3.1 (d, J = 3.5
Hz, 2 H), 3.2 (t, J = 7.2
Hz, 2 H), 4.05-4.13 (m, 2 H), 4.68-4.75
(m, 1 H), 5.67 (d, J = 7.9
Hz, 1 H). ¹³C NMR (62.9 MHz,
CDCl3): δ = 14.3, 14.9, 15.8, 20.3,
24.9, 32.7, 50.2, 59.6, 94.9, 104.2, 130.9, 150.9, 169.6. Anal.
Calcd for C13H21NO2 (223.3): C,
69.92; H, 9.48; N, 6.27; Found: C, 69.65; H, 9.23; N, 6.12.
Ethyl 1-Butyl-2,4-dimethyl-1,4-dihydropyridine-3-carboxylate
(2e). Colorless viscous liquid. IR (neat, NaCl): 2958, 2930,
2872, 1684, 1560, 1232, 1177, 1137, 1088
cm-¹. ¹H
NMR (250 MHz, CDCl3): δ = 0.92-0.98
(m, 6 H), 1.27 (t, J = 6.4
Hz, 3 H), 1.33-1.42 (m, 2 H), 1.48-1.59
(m, 2 H), 2.38 (s, 3 H), 3.11-3.23 (m,
1 H), 3.32-3.52 (m, 2 H), 4.07-4.20
(m, 2 H), 4.87 (dd, J = 7.4,
6.2 Hz, 1 H), 5.81 (d, J = 7.4
Hz, 1 H). ¹³C NMR (62.9 MHz,
CDCl3): δ = 14.3, 14.9, 16.0, 20.2,
25.3, 28.5, 32.8, 50.2, 59.5, 101.0, 109.2, 129.6, 149.3, 169.7.
Anal. Calcd for C14H23NO2 (237.3):
C, 70.85; H, 9.77; N, 5.90. Found: C, 70.57; H, 9.50; N, 6.00.
Ethyl 1-Butyl-2-methyl-4-phenyl-1,4-dihydropyridine-3-carboxylate
(2k). Light-yellow viscous liquid. IR (neat, NaCl): 2959, 2872,
1682, 1557, 1393, 1230, 1178, 1145, 1078 cm-¹. ¹H
NMR (250 MHz, CDCl3): δ = 0.99 (t, J = 7.3 Hz,
3 H), 1.13 (t, J = 7.1
Hz, 3 H), 1.31-1.46 (m, 2 H), 1.55-1.68
(m, 2 H), 2.49 (s, 3 H), 3.21-3.32 (m,
1 H), 3.44-3.56 (m, 1 H), 3.99 (q, J = 7.1 Hz,
2 H), 4.60 (d, J = 5.6
Hz, 1 H), 4.96 (dd, J = 5.6,
7.5 Hz, 1 H), 5.91 (d, J = 7.6
Hz, 1 H), 7.15-7.55 (m, 5 H). ¹³C
NMR (62.9 MHz, CDCl3): δ = 14.3, 14.7,
16.2, 20.1, 32.7, 40.5, 50.4, 59.5, 99.9, 108.2, 126.3, 127.7 (2 × C),
128.6 (2 × C), 129.3, 149.1, 149.7, 169.6. Anal. Calcd
for C19H25NO2 (299.4): C, 76.22;
H, 8.42; N, 4.68. Found: C, 75.98; H, 8.31; N, 4.23.