Subscribe to RSS
DOI: 10.1055/s-0029-1217720
Influence of Appended Groups on the Formation of 16-Membered Macrolactone Core Related to the Plecomacrolides via Diene-Ene Ring-Closing Metathesis
Publication History
Publication Date:
31 July 2009 (online)
Abstract
A 1,3-diene-ene ring-closing metathesis (RCM) strategy was investigated for assembling the 16-membered macrolactone core of the plecomacrolides. It was found that the desired (10E,12E)-diene unit could be constructed from the fully functionalized C13-C17 homoallyl alcohol fragment and the C1-C12 acid fragment possessing one E double bond at C2-C3 or C3-C4. The functional groups at C2 and C3 resulted in preferential formation of the undesired (12Z)-macrolactone, while additional appended groups at C6-C8 furnished the (12Z)-macrolactone as the sole RCM product.
Key words
alkene - 1,3-diene - macrolactone - plecomacrolide - ring-closing metathesis
- Supporting Information for this article is available online:
- Supporting Information
- 1
Werner G.Hagenmaier H.Drautz H.Baumgartner A.Zähner H. J. Antibiot. 1984, 37: 110 - 2
Bindseil KU.Zeeck A. Liebigs Ann. Chem. 1994, 305 - 3
Dai W.-M.Guan Y.Jin J. Curr. Med. Chem. 2005, 12: 1947 -
4a
Kinashi H.Someno K.Sakaguchi K.Higashijima T.Miyazawa T. Tetrahedron Lett. 1981, 22: 3857 -
4b
Westley JW.Liu CM.Sello LH.Evans RH.Troupe N.Blount JF.Chiu AM.Todaro LJ.Miller PA. J. Antibiot. 1984, 37: 1738 -
4c
Baker GH.Brown PJ.Dorgan RJJ.Everett JR.Ley SV.Slawin AMZ.Williams DJ. Tetrahedron Lett. 1987, 28: 5565 -
4d
Baker GH.Brown PJ.Dorgan RJJ.Everett JR. J. Chem. Soc., Perkin Trans. 2 1989, 1073 -
4e
Dröse S.Bindseil KU.Bowman EJ.Sievers A.Zeeck A.Altendorf K. Biochemistry 1993, 32: 3902 -
4f
Dröse S.Boddien C.Gassel M.Ingenhorst G.Zeeck A.Altendorf K. Biochemistry 2001, 40: 2816 - 5
Yoshimoto Y.Jyojima T.Arita T.Ueda M.Imoto M.Matsumura S.Toshima K. Bioorg. Med. Chem. Lett. 2002, 12: 2525 -
6a
Bowman EJ.Siebers A.Altendorf K. Proc. Nat. Acad. Sci. U.S.A. 1988, 85: 7972 -
6b
Drose S.Altendorf K. J. Exp. Biol. 1997, 200: 1 - 7
Bowman BJ.McCall ME.Baertsch R.Bowman EJ. J. Biol. Chem. 2006, 281: 31885 - 8 For a review, see:
Beutler JA.McKee TC. Curr. Med. Chem. 2003, 10: 787 -
9a
Lu C.Shen Y. J. Antibiot. 2004, 57: 597 -
9b
Lu C.Shen Y. J. Antibiot. 2003, 56: 415 -
10a
Evans DA.Calter MA. Tetrahedron Lett. 1993, 34: 6871 -
10b
Calter MA. PhD Thesis Harvard University; USA: 1993. -
11a
Toshima K.Jyokaaki T.Yamaguchi H.Murase H.Yoshida T.Mastumura S.Nakata M. Tetrahedron Lett. 1996, 37: 1069 -
11b
Toshima K.Yamaguchi H.Jyojima T.Noguchi Y.Nakata M.Mastumura S. Tetrahedron Lett. 1996, 37: 1073 -
11c
Toshima K.Jyojima T.Yamaguchi H.Noguchi Y.Yoshida T.Murase H.Nakata M.Mastumura S. J. Org. Chem. 1997, 62: 3271 -
12a
Scheidt KA.Tasaka A.Bannister TD.Wendt MD.Roush WR. Angew. Chem. Int. Ed. 1999, 38: 1652 -
12b
Scheidt KA.Bannister TD.Tasaka A.Wendt MD.Savall BM.Fegley GJ.Roush WR. J. Am. Chem. Soc. 2002, 124: 6981 - 13
Hanessian S.Ma J.Wang W.Gai Y. J. Am. Chem. Soc. 2001, 123: 10200 ; Correction: J. Am. Chem. Soc. 2002, 124, 7249 - 14
Kleinbeck F.Carreira EM. Angew. Chem. Int. Ed. 2009, 48: 578 - 15
Quéron E.Lett R. Tetrahedron Lett. 2004, 45: 4539 ; and references cited therein - 16
Marshall JA.Adams ND. J. Org. Chem. 2002, 67: 733 -
17a
Poupon J.-C.Demont E.Prunet J.Férézou J.-P.
J. Org. Chem. 2003, 68: 4700 -
17b
Lopez R.Poupon J.-C.Prunet J.Férézou J.-P.Ricard L. Synthesis 2005, 644 - 18
Yadav JS.Reddy KB.Sabitha G. Tetrahedron 2008, 64: 1971 - 19
Paterson I.Bower S.McLeod MD. Tetrahedron Lett. 1995, 36: 175 - 20
Eustache F.Dalko PI.Cossy J. J. Org. Chem. 2003, 68: 9994 - 21 For reviews on the total synthesis
of plecomacrolides, see:
Toshima K. Curr. Org. Chem. 2004, 8: 185 ; and ref. 3 - For selected reviews on RCM, see:
-
22a
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 -
22b
Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3012 -
22c
Trnka TM.Grubbs RH. Acc. Chem. Res. 2001, 34: 18 -
22d
Schrock RR.Hoveyda AH. Angew. Chem. Int. Ed. 2003, 42: 4592 -
22e
Deiters A.Martin SF. Chem. Rev. 2004, 104: 2199 -
22f
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4490 -
22g
Gradillas A.Pérez-Castells J. Angew. Chem. Int. Ed. 2006, 45: 6086 -
22h
Schrodi Y.Pederson RL. Aldrichimica Acta 2007, 40: 45 -
22i
Hoveyda AH.Zhugralin AR. Nature 2007, 450: 243 -
22j
Handbook
of Metathesis
Vol. 1-3:
Grubbs RH. Wiley-VCH; Weinheim: 2003. - For selected examples of 1,3-diene-ene RCM in the synthesis of macrocycles, see:
-
23a
Hayashi Y.Shoji M.Ishikawa H.Yamaguchi J.Tamura T.Imai H.Nishigaya Y.Takabe K.Kakeya H.Osada H. Angew. Chem. Int. Ed. 2008, 47: 6657 -
23b
Wang L.Gong J.Deng L.Xiang Z.Chen Z.Wang Y.Chen J.Yang Z. Org. Lett. 2009, 11: 1809 ; see also the early references cited in ref. 26 - For our recent work on the use of RCM in total synthesis, see:
-
24a
Jin J.Chen Y.Li Y.Wu J.Dai W.-M. Org. Lett. 2007, 9: 2585 -
24b
Dai W.-M.Chen Y.Jin J.Wu J.Lou J.He Q. Synlett 2008, 1737 -
24c
Dai W.-M.Shi L.Li Y. Tetrahedron: Asymmetry 2008, 19: 1549 - 25
Lu K.Huang M.Xiang Z.Liu Y.Chen J.Yang Z. Org. Lett. 2006, 8: 1193 - 26
Guan Y.Wu J.Sun L.Dai W.-M. J. Org. Chem. 2007, 72: 4953 - 31
Dai W.-M.Feng G.Wu J.Sun L. Synlett 2008, 1013 -
32a
Andrus MB.Soma Sekhar BBV.Turner TM.Meredith EL. Tetrahedron Lett. 2001, 42: 7179 -
32b
Andrus MB.Meredith EL.Simmons BL.Soma Sekhar BBV.Hicken EJ. Org. Lett. 2002, 4: 3549 - 35
Granberg KL.Edvinsson KM.Nilsson K. Tetrahedron Lett. 1999, 40: 755
References and Notes
General procedure for the 1,3-diene-ene RCM reaction. To a solution of the seco substrate (4.6 × 10-² mmol) in degassed toluene (46 mL), was added Grubbs’ second generation initiator 8 (3.9 mg, 4.6 × 10-³ mmol) followed by stirring at 80 ˚C for 4 h. After cooling to r.t., the reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel; EtOAc-hexane, 2%) to provide the RCM product. For the RCM reaction of 21 (Scheme [4] ), the loading of 8 was 13 mol% and the reaction time was 11 h instead of 4 h.
28Physical and spectroscopic data for 7: Colorless oil; [α]D ²0 +74.5 (c 0.85, CHCl3); R f = 0.33 (EtOAc-hexane, 5%); IR (film): 2930, 1723, 1654, 1428, 1110 cm-¹; ¹H NMR (300 MHz, CDCl3): δ = 7.75-7.63 (m, 4 H), 7.45-7.28 (m, 6 H), 6.81 (ddd, J = 15.0, 10.8, 4.2 Hz, 1 H), 6.32 (dd, J = 15.3, 11.1 Hz, 1 H), 5.79 (d, J = 10.2 Hz, 1 H), 5.63 (dd, J = 15.6, 2.4 Hz, 1 H), 5.31 (dd, J = 15.3, 9.6 Hz, 1 H), 5.20 (dd, J = 9.6, 2.4 Hz, 1 H), 3.65 (dd, J = 9.6, 9.0 Hz, 1 H), 3.57, 3.46 (ABqd, J = 9.9, 7.2 Hz, 2 H), 3.26 (s, 3 H), 2.40-1.90 (m, 5 H), 1.71 (s, 3 H), 1.60-1.37 (m, 4 H), 1.37-1.10 (m, 4 H), 1.05 (s, 9 H), 0.97 (d, J = 6.9 Hz, 3 H); ¹³C NMR (75 MHz, CDCl3): δ = 166.0, 150.7, 139.3, 135.6 (×2), 135.5 (×2), 133.8, 133.7, 131.6, 129.3 (×2), 128.5, 127.4 (×4), 125.0, 121.6, 83.3, 72.6, 66.1, 56.4, 39.2, 36.1, 31.4, 28.2, 27.8, 27.6, 26.9 (×3), 26.1, 19.3, 15.6, 10.7; HRMS (+ESI): m/z [M + Na+] calcd for C36H50O4SiNa+: 597.3376; found: 597.3352.
29Physical and spectroscopic data for 11: Colorless oil; [α]D ²0 +32.8 (c 0.25, CHCl3); R f = 0.50 (EtOAc-hexane, 5%); IR (film): 2929, 1741, 1463, 1111 cm-¹; ¹H NMR (300 MHz, CDCl3): δ = 7.70-7.62 (m, 4 H), 7.43-7.30 (m, 6 H), 6.32 (dd, J = 15.0, 10.8 Hz, 1 H), 5.80 (d, J = 11.1 Hz, 1 H), 5.36 (dd, J = 15.0, 9.3 Hz, 1 H), 5.25-4.17 (m, 2 H), 3.58 (dd, J = 9.6, 9.3 Hz, 1 H), 3.52-3.38 (m, 2 H), 3.25 (s, 3 H), 2.82 (d, J = 6.6 Hz, 2 H), 2.43-2.32 (m, 1 H), 2.20-2.09 (m, 1 H), 2.05-1.92 (m, 3 H), 1.69 (s, 3 H), 1.51 (s, 3 H), 1.55-1.40 (m, 2 H), 1.40-1.10 (m, 4 H), 1.04 (s, 9 H), 0.91 (d, J = 7.2 Hz, 3 H); ¹³C NMR (75 MHz, CDCl3): δ = 171.4, 138.7, 136.5, 135.6 (×2), 135.5 (×2), 133.7, 133.6, 131.3, 129.4, 129.3, 128.8, 127.4 (×4), 125.7, 117.2, 82.1, 72.6, 65.7, 56.1, 39.1, 38.4, 35.7, 33.6, 26.9 (×3), 26.0, 25.5, 25.4, 19.3, 16.4, 16.1, 10.3; HRMS (+ESI): m/z [M + Na+] calcd for C37H52O4SiNa+: 611.3527; found: 611.3533.
30Physical and spectroscopic data for 18: Colorless oil; [α]D ²0 -63.3 (c 0.50, CHCl3); R f = 0.54 (EtOAc-hexane, 10%); IR (film): 2931, 1721, 1646, 1428, 1246, 1108 cm-¹; ¹H NMR (300 MHz, CDCl3): δ = 7.70-7.61 (m, 4 H), 7.44-7.30 (m, 6 H), 6.67 (s, 1 H), 6.46 (dd, J = 11.4, 11.4 Hz, 1 H), 6.18 (d, J = 11.1 Hz, 1 H), 5.52 (dd, J = 9.9, 6.0 Hz, 1 H), 5.19 (dd, J = 9.9, 1.8 Hz, 1 H), 5.11 (dd, J = 10.2, 10.2 Hz, 1 H), 4.28 (dd, J = 9.6, 9.6 Hz, 1 H), 3.62 (dd, J = 9.6, 6.9 Hz, 1 H), 3.46 (s, 3 H), 3.39 (d, J = 9.6, 7.8 Hz, 1 H), 3.27 (s, 3 H), 2.50-2.18 (m, 5 H), 1.97 (s, 3 H), 1.67 (s, 3 H), 1.60-1.20 (m, 4 H), 1.05 (s, 9 H), 1.04 (d, J = 7.2 Hz, 3 H); ¹³C NMR (75 MHz, CDCl3): δ = 162.5, 144.7, 140.4, 136.0, 135.5 (×2), 135.5 (×2), 133.7, 133.7, 129.9 (×2), 129.4, 129.3, 127.5 (×2), 127.4 (×2), 126.8, 120.7, 120.4, 75.1, 73.6, 66.2, 59.4, 56.4, 37.8, 36.6, 27.4, 27.3, 26.9 (×3), 25.0, 22.7, 19.3, 15.0, 10.5; HRMS (+ESI): m/z [M + Na+] calcd for C38H52O5SiNa+: 639.3476; found: 639.3468.
33Physical and spectroscopic data for 25: Colorless oil; [α]577 ²5 -89.1 (c 0.43, CH2Cl2); R f = 0.22 (EtOAc-hexane, 33%); IR (film): 3444, 2927, 1715, 1641, 1456, 1247, 1105 cm-¹; ¹H NMR (400 MHz, CDCl3): δ = 6.64 (d, J = 0.4 Hz, 1 H), 6.43 (dd, J = 12.0, 12.0 Hz, 1 H), 6.03 (d, J = 12.8 Hz, 1 H), 5.91 (d, J = 10.4 Hz, 1 H), 5.01 (d, J = 10.4 Hz, 1 H), 4.96 (dd, J = 9.6, 2.4 Hz, 1 H), 4.18 (dd, J = 9.6, 9.6 Hz, 1 H), 3.64 (d, J = 2.4 Hz, 1 H), 3.62 (s, 3 H), 3.53-3.28 (m, 3 H), 3.25 (s, 3 H), 2.77 (dd, J = 16.4, 2.8 Hz, 1 H), 2.63-2.53 (m, 1 H), 2.40-2.30 (m, 1 H), 1.92 (d, J = 1.2 Hz, 3 H), 1.67 (s, 3 H), 1.60-1.50 (m, 2 H), 1.17 (d, J = 6.8 Hz, 3 H), 1.08 (d, J = 6.8 Hz, 3 H), 0.92 (d, J = 6.8 Hz, 3 H) (one OH signal not seen); ¹³C NMR (100 MHz, CDCl3): δ = 165.3, 141.9, 141.0, 140.9, 133.5, 131.4, 130.7, 126.8, 120.3, 80.4, 75.2, 74.9, 64.5, 60.3, 56.3, 40.7, 39.9, 35.8, 35.7, 25.3, 17.0, 14.9, 13.4, 9.9; HRMS (+CI): m/z [M+] calcd for C24H38O6: 422.2668; found: 422.2662.
34We attempted the isomerization of the (12Z)-double bond in 25 by treatment with CSA in toluene-d 8 at room temperature for 1 day, resulting in no visible change. When 25 was exposed to I2 in toluene-d 8 at 40 ˚C overnight, no clear conclusion could be drawn from the ¹H NMR spectrum of the reaction mixture.