References and Notes
- 1
Werner G.
Hagenmaier H.
Drautz H.
Baumgartner A.
Zähner H.
J.
Antibiot.
1984,
37:
110
- 2
Bindseil KU.
Zeeck A.
Liebigs Ann. Chem.
1994,
305
- 3
Dai W.-M.
Guan Y.
Jin J.
Curr.
Med. Chem.
2005,
12:
1947
-
4a
Kinashi H.
Someno K.
Sakaguchi K.
Higashijima T.
Miyazawa T.
Tetrahedron Lett.
1981,
22:
3857
-
4b
Westley JW.
Liu CM.
Sello LH.
Evans RH.
Troupe N.
Blount JF.
Chiu AM.
Todaro LJ.
Miller PA.
J. Antibiot.
1984,
37:
1738
-
4c
Baker GH.
Brown PJ.
Dorgan RJJ.
Everett JR.
Ley SV.
Slawin
AMZ.
Williams DJ.
Tetrahedron
Lett.
1987,
28:
5565
-
4d
Baker GH.
Brown PJ.
Dorgan RJJ.
Everett JR.
J.
Chem. Soc., Perkin Trans. 2
1989,
1073
-
4e
Dröse S.
Bindseil KU.
Bowman EJ.
Sievers A.
Zeeck A.
Altendorf K.
Biochemistry
1993,
32:
3902
-
4f
Dröse S.
Boddien C.
Gassel M.
Ingenhorst G.
Zeeck A.
Altendorf K.
Biochemistry
2001,
40:
2816
- 5
Yoshimoto Y.
Jyojima T.
Arita T.
Ueda M.
Imoto M.
Matsumura S.
Toshima K.
Bioorg.
Med. Chem. Lett.
2002,
12:
2525
-
6a
Bowman EJ.
Siebers A.
Altendorf K.
Proc. Nat. Acad. Sci. U.S.A.
1988,
85:
7972
-
6b
Drose S.
Altendorf K.
J. Exp. Biol.
1997,
200:
1
- 7
Bowman BJ.
McCall ME.
Baertsch R.
Bowman EJ.
J. Biol. Chem.
2006,
281:
31885
- 8 For a review, see: Beutler JA.
McKee TC.
Curr.
Med. Chem.
2003,
10:
787
-
9a
Lu C.
Shen Y.
J.
Antibiot.
2004,
57:
597
-
9b
Lu C.
Shen Y.
J. Antibiot.
2003,
56:
415
-
10a
Evans DA.
Calter MA.
Tetrahedron Lett.
1993,
34:
6871
-
10b
Calter MA.
PhD Thesis
Harvard
University;
USA:
1993.
-
11a
Toshima K.
Jyokaaki T.
Yamaguchi H.
Murase H.
Yoshida T.
Mastumura S.
Nakata M.
Tetrahedron Lett.
1996,
37:
1069
-
11b
Toshima K.
Yamaguchi H.
Jyojima T.
Noguchi Y.
Nakata M.
Mastumura S.
Tetrahedron Lett.
1996,
37:
1073
-
11c
Toshima K.
Jyojima T.
Yamaguchi H.
Noguchi Y.
Yoshida T.
Murase H.
Nakata M.
Mastumura S.
J. Org. Chem.
1997,
62:
3271
-
12a
Scheidt KA.
Tasaka A.
Bannister TD.
Wendt
MD.
Roush WR.
Angew.
Chem. Int. Ed.
1999,
38:
1652
-
12b
Scheidt KA.
Bannister TD.
Tasaka A.
Wendt
MD.
Savall BM.
Fegley GJ.
Roush WR.
J.
Am. Chem. Soc.
2002,
124:
6981
- 13
Hanessian S.
Ma J.
Wang W.
Gai Y.
J. Am. Chem. Soc.
2001,
123:
10200 ; Correction: J. Am.
Chem. Soc. 2002, 124, 7249
- 14
Kleinbeck F.
Carreira EM.
Angew. Chem. Int.
Ed.
2009,
48:
578
- 15
Quéron E.
Lett R.
Tetrahedron Lett.
2004,
45:
4539 ; and references cited therein
- 16
Marshall JA.
Adams ND.
J. Org. Chem.
2002,
67:
733
-
17a
Poupon J.-C.
Demont E.
Prunet J.
Férézou J.-P.
J. Org. Chem.
2003,
68:
4700
-
17b
Lopez R.
Poupon J.-C.
Prunet J.
Férézou J.-P.
Ricard L.
Synthesis
2005,
644
- 18
Yadav JS.
Reddy KB.
Sabitha G.
Tetrahedron
2008,
64:
1971
- 19
Paterson I.
Bower S.
McLeod MD.
Tetrahedron
Lett.
1995,
36:
175
- 20
Eustache F.
Dalko PI.
Cossy J.
J.
Org. Chem.
2003,
68:
9994
- 21 For reviews on the total synthesis
of plecomacrolides, see: Toshima K.
Curr.
Org. Chem.
2004,
8:
185 ;
and ref. 3
-
For selected reviews on RCM, see:
-
22a
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
-
22b
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012
-
22c
Trnka TM.
Grubbs RH.
Acc.
Chem. Res.
2001,
34:
18
-
22d
Schrock RR.
Hoveyda AH.
Angew.
Chem. Int. Ed.
2003,
42:
4592
-
22e
Deiters A.
Martin SF.
Chem. Rev.
2004,
104:
2199
-
22f
Nicolaou KC.
Bulger PG.
Sarlah D.
Angew. Chem. Int. Ed.
2005,
44:
4490
-
22g
Gradillas A.
Pérez-Castells J.
Angew. Chem.
Int. Ed.
2006,
45:
6086
-
22h
Schrodi Y.
Pederson RL.
Aldrichimica Acta
2007,
40:
45
-
22i
Hoveyda AH.
Zhugralin AR.
Nature
2007,
450:
243
-
22j
Handbook
of Metathesis
Vol. 1-3:
Grubbs RH.
Wiley-VCH;
Weinheim:
2003.
-
For selected examples of 1,3-diene-ene
RCM in the synthesis of macrocycles, see:
-
23a
Hayashi Y.
Shoji M.
Ishikawa H.
Yamaguchi J.
Tamura T.
Imai H.
Nishigaya Y.
Takabe K.
Kakeya H.
Osada H.
Angew. Chem. Int. Ed.
2008,
47:
6657
-
23b
Wang L.
Gong J.
Deng L.
Xiang Z.
Chen Z.
Wang Y.
Chen J.
Yang Z.
Org.
Lett.
2009,
11:
1809 ;
see also the early references cited in ref. 26
-
For our recent work on the use
of RCM in total synthesis, see:
-
24a
Jin J.
Chen Y.
Li Y.
Wu J.
Dai W.-M.
Org. Lett.
2007,
9:
2585
-
24b
Dai W.-M.
Chen Y.
Jin J.
Wu J.
Lou J.
He Q.
Synlett
2008,
1737
-
24c
Dai W.-M.
Shi L.
Li Y.
Tetrahedron:
Asymmetry
2008,
19:
1549
- 25
Lu K.
Huang M.
Xiang Z.
Liu Y.
Chen J.
Yang Z.
Org.
Lett.
2006,
8:
1193
- 26
Guan Y.
Wu J.
Sun L.
Dai W.-M.
J. Org. Chem.
2007,
72:
4953
- 31
Dai W.-M.
Feng G.
Wu J.
Sun L.
Synlett
2008,
1013
-
32a
Andrus MB.
Soma Sekhar BBV.
Turner TM.
Meredith EL.
Tetrahedron Lett.
2001,
42:
7179
-
32b
Andrus MB.
Meredith EL.
Simmons BL.
Soma Sekhar BBV.
Hicken EJ.
Org.
Lett.
2002,
4:
3549
- 35
Granberg KL.
Edvinsson KM.
Nilsson K.
Tetrahedron Lett.
1999,
40:
755
27 General procedure for the 1,3-diene-ene
RCM reaction. To a solution of the seco substrate (4.6 × 10-² mmol)
in degassed toluene (46 mL), was added Grubbs’ second generation
initiator 8 (3.9 mg, 4.6 × 10-³ mmol)
followed by stirring at 80 ˚C for 4 h. After cooling
to r.t., the reaction mixture was concentrated under reduced pressure.
The residue was purified by flash column chromatography (silica gel;
EtOAc-hexane, 2%) to provide the RCM product.
For the RCM reaction of 21 (Scheme
[4]
), the loading of 8 was
13 mol% and the reaction time was 11 h instead of 4 h.
28 Physical and spectroscopic data for 7: Colorless oil; [α]D
²0 +74.5
(c 0.85, CHCl3); R
f
= 0.33
(EtOAc-hexane, 5%); IR (film): 2930, 1723, 1654,
1428, 1110 cm-¹; ¹H
NMR (300 MHz, CDCl3): δ = 7.75-7.63
(m, 4 H), 7.45-7.28 (m, 6 H), 6.81 (ddd, J = 15.0,
10.8, 4.2 Hz, 1 H), 6.32 (dd, J = 15.3, 11.1
Hz, 1 H), 5.79 (d, J = 10.2
Hz, 1 H), 5.63 (dd, J = 15.6, 2.4
Hz, 1 H), 5.31 (dd, J = 15.3,
9.6 Hz, 1 H), 5.20 (dd, J = 9.6,
2.4 Hz, 1 H), 3.65 (dd, J = 9.6,
9.0 Hz, 1 H), 3.57, 3.46 (ABqd, J = 9.9,
7.2 Hz, 2 H), 3.26 (s, 3 H), 2.40-1.90 (m,
5 H), 1.71 (s, 3 H), 1.60-1.37 (m, 4 H),
1.37-1.10 (m, 4 H), 1.05 (s, 9 H), 0.97
(d, J = 6.9
Hz, 3 H); ¹³C NMR (75 MHz,
CDCl3): δ = 166.0, 150.7, 139.3, 135.6
(×2), 135.5 (×2), 133.8, 133.7, 131.6, 129.3 (×2),
128.5, 127.4 (×4), 125.0, 121.6, 83.3, 72.6, 66.1, 56.4,
39.2, 36.1, 31.4, 28.2, 27.8, 27.6, 26.9 (×3), 26.1, 19.3,
15.6, 10.7; HRMS (+ESI): m/z [M + Na+] calcd
for C36H50O4SiNa+:
597.3376; found: 597.3352.
29 Physical and spectroscopic data for 11: Colorless oil; [α]D
²0 +32.8
(c 0.25, CHCl3); R
f
= 0.50
(EtOAc-hexane, 5%); IR (film): 2929, 1741, 1463,
1111 cm-¹; ¹H NMR
(300 MHz, CDCl3): δ = 7.70-7.62
(m, 4 H), 7.43-7.30 (m, 6 H), 6.32 (dd, J = 15.0,
10.8 Hz, 1 H), 5.80 (d, J = 11.1
Hz, 1 H), 5.36 (dd, J = 15.0,
9.3 Hz, 1 H), 5.25-4.17 (m, 2 H), 3.58
(dd, J = 9.6,
9.3 Hz, 1 H), 3.52-3.38 (m, 2 H), 3.25
(s, 3 H), 2.82 (d, J = 6.6
Hz, 2 H), 2.43-2.32 (m, 1 H), 2.20-2.09
(m, 1 H), 2.05-1.92 (m, 3 H), 1.69 (s,
3 H), 1.51 (s, 3 H), 1.55-1.40 (m, 2 H),
1.40-1.10 (m, 4 H), 1.04 (s, 9 H), 0.91
(d, J = 7.2 Hz,
3 H); ¹³C NMR (75 MHz, CDCl3): δ = 171.4,
138.7, 136.5, 135.6 (×2), 135.5 (×2), 133.7, 133.6,
131.3, 129.4, 129.3, 128.8, 127.4 (×4), 125.7, 117.2, 82.1,
72.6, 65.7, 56.1, 39.1, 38.4, 35.7, 33.6, 26.9 (×3), 26.0,
25.5, 25.4, 19.3, 16.4, 16.1, 10.3; HRMS (+ESI): m/z [M + Na+] calcd
for C37H52O4SiNa+:
611.3527; found: 611.3533.
30 Physical and spectroscopic data for 18: Colorless oil; [α]D
²0 -63.3
(c 0.50, CHCl3); R
f
= 0.54
(EtOAc-hexane, 10%); IR (film): 2931, 1721, 1646,
1428, 1246, 1108 cm-¹; ¹H
NMR (300 MHz, CDCl3): δ = 7.70-7.61
(m, 4 H), 7.44-7.30 (m, 6 H), 6.67 (s,
1 H), 6.46 (dd, J = 11.4,
11.4 Hz, 1 H), 6.18 (d, J = 11.1
Hz, 1 H), 5.52 (dd, J = 9.9,
6.0 Hz, 1 H), 5.19 (dd, J = 9.9,
1.8 Hz, 1 H), 5.11 (dd, J = 10.2,
10.2 Hz, 1 H), 4.28 (dd, J = 9.6,
9.6 Hz, 1 H), 3.62 (dd, J = 9.6,
6.9 Hz, 1 H), 3.46 (s, 3 H), 3.39 (d, J = 9.6, 7.8
Hz, 1 H), 3.27 (s, 3 H), 2.50-2.18 (m,
5 H), 1.97 (s, 3 H), 1.67 (s, 3 H), 1.60-1.20 (m,
4 H), 1.05 (s, 9 H), 1.04 (d, J = 7.2
Hz, 3 H); ¹³C NMR (75 MHz,
CDCl3): δ = 162.5, 144.7, 140.4, 136.0,
135.5 (×2), 135.5 (×2), 133.7, 133.7, 129.9 (×2),
129.4, 129.3, 127.5 (×2), 127.4 (×2), 126.8, 120.7,
120.4, 75.1, 73.6, 66.2, 59.4, 56.4, 37.8, 36.6, 27.4, 27.3, 26.9
(×3), 25.0, 22.7, 19.3, 15.0, 10.5; HRMS (+ESI): m/z [M + Na+] calcd
for C38H52O5SiNa+:
639.3476; found: 639.3468.
33 Physical and spectroscopic data for 25: Colorless oil; [α]577
²5 -89.1
(c 0.43, CH2Cl2); R
f
= 0.22
(EtOAc-hexane, 33%); IR (film): 3444, 2927, 1715,
1641, 1456, 1247, 1105 cm-¹; ¹H NMR
(400 MHz, CDCl3): δ = 6.64 (d, J = 0.4 Hz,
1 H), 6.43 (dd, J = 12.0,
12.0 Hz, 1 H), 6.03 (d, J = 12.8
Hz, 1 H), 5.91 (d, J = 10.4
Hz, 1 H), 5.01 (d, J = 10.4
Hz, 1 H), 4.96 (dd, J = 9.6,
2.4 Hz, 1 H), 4.18 (dd, J = 9.6,
9.6 Hz, 1 H), 3.64 (d, J = 2.4
Hz, 1 H), 3.62 (s, 3 H), 3.53-3.28 (m,
3 H), 3.25 (s, 3 H), 2.77 (dd, J = 16.4,
2.8 Hz, 1 H), 2.63-2.53 (m, 1 H), 2.40-2.30
(m, 1 H), 1.92 (d, J = 1.2
Hz, 3 H), 1.67 (s, 3 H), 1.60-1.50 (m,
2 H), 1.17 (d, J = 6.8
Hz, 3 H), 1.08 (d, J = 6.8 Hz,
3 H), 0.92 (d, J = 6.8
Hz, 3 H) (one OH signal not seen); ¹³C
NMR (100 MHz, CDCl3): δ = 165.3, 141.9,
141.0, 140.9, 133.5, 131.4, 130.7, 126.8, 120.3, 80.4, 75.2, 74.9,
64.5, 60.3, 56.3, 40.7, 39.9, 35.8, 35.7, 25.3, 17.0, 14.9, 13.4,
9.9; HRMS (+CI): m/z [M+] calcd
for C24H38O6: 422.2668; found:
422.2662.
34 We attempted the isomerization of
the (12Z)-double bond in 25 by
treatment with CSA in toluene-d
8 at
room temperature for 1 day, resulting in no visible change. When 25 was exposed to I2 in toluene-d
8 at 40 ˚C
overnight, no clear conclusion could be drawn from the ¹H
NMR spectrum of the reaction mixture.