RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217739
Celebrating 20 Years of SYNLETT - Special Essay: General Procedure for the Palladium-Catalyzed Selective Hydrophosphorylation of Alkynes
Publikationsverlauf
Publikationsdatum:
27. August 2009 (online)

Abstract
A novel catalytic system has been developed to accomplish the hydrophosphorylation of terminal and internal alkynes with high isolated yields (up to 96%) and excellent regio- and stereoselectivity (>99:1). The key factor was to apply a low-ligated palladium/triphenylphosphane (1:2) catalytic system in the presence of a catalytic amount of trifluoroacetic acid. The catalytic system so developed has been applied successfully to permit the formation of diverse alkenylphosphonates utilizing a variety of available H-phosphonates and alkynes.
Key words
addition reactions - alkynes - palladium - homogenous catalysis - phosphorylations
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Catalytic
Heterofunctionalization
Togni A.Grützmacher H. Wiley-VCH; Weinheim: 2001. -
1b
Alonso F.Beletskaya IP.Yus M. Chem. Rev. 2004, 104: 3079 -
1c
Beller M.Seayad J.Tillack A.Jiao H. Angew. Chem. Int. Ed. 2004, 43: 3368 -
1d
Suginome M.Ito Y. J. Organomet. Chem. 2003, 685: 218 -
1e
Suginome M.Ito Y. J. Organomet. Chem. 2003, 680: 43 -
1f
Kondo T.Mitsudo T. Chem. Rev. 2000, 100: 3205 -
2a
Beletskaya IP.Ananikov VP. Eur. J. Org. Chem. 2007, 3431 -
2b
Beletskaya IP.Ananikov VP. Pure Appl. Chem. 2007, 79: 1041 - For recent reviews, see:
-
3a
Coudray L.Montchamp J.-L. Eur. J. Org. Chem. 2008, 3601 -
3b
Tanaka M. Top. Curr. Chem. 2004, 232: 25 -
3c
Baillie C.Xiao J. Curr. Org. Chem. 2003, 7: 477 -
3d
Beletskaya IP.Kazankova MA. Russ. J. Org. Chem. (Engl. Transl.) 2002, 38: 1391 - For selected examples, see:
-
4a
Quntar AAA.Gallily R.Katzavian G.Srebnik M. Eur. J. Pharmacol. 2007, 556: 9 -
4b
Doddridge ZA.Bertram RD.Hayes CJ.Soultanas P. Biochemistry 2003, 42: 3239 -
4c
Jung K.-Y.Hohl RJ.Wiemer AJ.Wiemer DF. Bioorg. Med. Chem. 2000, 8: 2501 -
4d
Cermak DM.Wiemer DF.Lewis K.Hohl RJ. Bioorg. Med. Chem. 2000, 8: 2729 -
4e
Amori L.Costantino G.Marinozzi M.Pellicciari R.Gasparini F.Flor PJ.Kuhn R.Vranesic I. Bioorg. Med. Chem. Lett. 2000, 10: 1447 -
4f
Vidil C.Morere A.Garcia M.Barragan V.Hamdaoui B.Rochefort H.Montero J.-L. Eur. J. Org. Chem. 1999, 447 -
4g
Harnden MR.Parkin A.Parratt MJ.Perkins RM. J. Med. Chem. 1993, 36: 1343 -
4h
Dragovich PS.Webber SE.Babine RE.Fuhrman SA.Patick AK.Matthews DA.Lee CA.Reich SH.Prins TJ.Marakovits JT.Littlefield ES.Zhou R.Tikhe J.Ford CE.Wallace MB.Meador JW.Ferre RA.Brown EL.Binford SL.Harr JEV.DeLisle DM.Worland ST. J. Med. Chem. 1998, 41: 2806 -
4i
Lazrek HB.Khaïder H.Rochdi A.Barascut J.-L.Imbach J.-L. Tetrahedron Lett. 1996, 37: 4701 -
4j
Lazrek HB.Rochdi A.Khaider H.Barascut J.-L.Imbach J.-L.Balzarini J.Witvrouw M.Pannecouque C.De Clercq E. Tetrahedron 1998, 54: 3807 -
4k
Tian W.Zhu Z.Liao Q.Wu Y. Bioorg. Med. Chem. Lett. 1998, 8: 1949 -
4l
Holstein SA.Cermak DM.Wiemer DF.Lewis K.Hohl RJ. Bioorg. Med. Chem. 1998, 6: 687 - For representative examples of the asymmetric synthesis of biologically active and related compounds, see:
-
5a
Wang D.-Y.Hu X.-P.Huang J.-D.Deng J.Yu S.-B.Duan Z.-C.Xu X.-F.Zheng Z. Angew. Chem. Int. Ed. 2007, 46: 7810 -
5b
Hayashi T.Senda T.Takaya Y.Ogasawara M. J. Am. Chem. Soc. 1999, 121: 11591 -
5c
Giordano C.Castaldi G. J. Org. Chem. 1989, 54: 1470 -
5d
Thomas AA.Sharpless KB. J. Org. Chem. 1999, 64: 8379 -
5e
Burk MJ.Stammers TA.Straub JA. Org. Lett. 1999, 1: 387 -
5f
Sulzer-Moss S.Tissot M.Alexakis A. Org. Lett. 2007, 9: 3749 -
5g
Yokomatsu T.Yoshida Y.Suemune K.Yamagishi T.Shibuya S. Tetrahedron: Asymmetry 1995, 6: 365 -
5h
Cravotto G.Giovenzana GB.Pagliarin R.Palmisano G.Sisti M. Tetrahedron: Asymmetry 1998, 9: 745 -
5i
Vieth S.Costisella B.Schneider M. Tetrahedron 1997, 53: 9623 -
5j
Henry J.-C.Lavergne D.Ratovelomanana-Vidal V.Genet J.-P.Beletskaya IP.Dolgina TM. Tetrahedron Lett. 1998, 39: 3473 - For reviews, see:
-
6a
Minami T.Motoyoshiya J. Synthesis 1992, 333 -
6b
Dembitsky VM.Quntar AAA.Haj-Yehiaa A.Srebnik M. Mini-Rev. Org. Chem. 2005, 2: 91 -
6c
Failla S.Finocchiaro P.Consiglio GA. Heteroat. Chem. 2000, 11: 493 -
6d
Maffei M. Curr. Org. Synth. 2004, 1: 355 -
6e
Nagaoka Y. Yakugaku Zasshi 2001, 121: 771 -
7a
Parvole J.Jannasch P. Macromolecules 2008, 41: 3893 -
7b
Sato T.Hasegawa M.Seno M.Hirano T.
J. Appl. Polym. Sci. 2008, 109: 3746 -
7c
Schmider M.Müh E.Klee JE.Mülhaupt R. Macromolecules 2005, 38: 9548 -
7d
Senhaji O.Robin JJ.Achchoubi M.Boutevin B. Macromol. Chem. Phys. 2004, 205: 1039 -
7e
Ebdon JR.Price D.Hunt BJ.Joseph P.Gao FG.Milnes GJ.Cunliffe LK. Polym. Degrad. Stab. 2000, 69: 267 -
7f
Jin S.Gonsalves KE. Macromolecules 1998, 31: 1010 -
7g
Hertler WR. J. Polym. Sci., Part A: Polym. Chem. 1991, 29: 869 - 8
Han LB.Tanaka M. J. Am. Chem. Soc. 1996, 118: 1571 -
9a
Zhao C.-Q.Han L.-B.Goto M.Tanaka M. Angew. Chem. Int. Ed. 2001, 40: 1929 -
9b
Han LB.Zhang C.Yazawa H.Shimada S. J. Am. Chem. Soc. 2004, 126: 5080 -
9c
Han LB.Hua R.Tanaka M. Angew. Chem. Int. Ed. 1998, 37: 94 -
10a
Goulioukina NS.Dolgina TM.Beletskaya IP.Henry J.-C.Lavergne D.Ratovelomanana-Vidal V.Genet J.-P. Tetrahedron: Asymmetry 2001, 12: 319 -
10b
Gulykina NS.Dolgina TM.Bondarenko GN.Beletskaya IP. Russ. J. Org. Chem. (Engl. Transl.) 2003, 39: 797 - 11
Han L.-B.Ono Y.Shimada S. J. Am. Chem. Soc. 2008, 130: 2752 -
13a
Tayama O.Nakano A.Iwahama T.Sakaguchi S.Ishii Y. J. Org. Chem. 2004, 69: 5494 -
13b
Beaufils F.Dénès F.Renaud P. Angew. Chem. Int. Ed. 2005, 44: 5273 - 14
Arbuzova SN.Gusarova NK.Trofimov BA. ARKIVOC 2006, (v): 12 - 15
Allen A.Manke DR.Lin W. Tetrahedron Lett. 2000, 41: 151 - 16
Dobashi N.Fuse K.Hoshino T.Kanada J.Kashiwabara T.Kobata C.Nune SK.Tanaka M. Tetrahedron Lett. 2007, 48: 4669 -
19a
Ananikov VP.Malyshev DA.Beletskaya IP.Aleksandrov GG.Eremenko IL. Adv. Synth. Catal. 2005, 347: 1993 -
19b
Ananikov VP.Beletskaya IP. Russ. Chem. Bull. Int. Ed. 2008, 57: 754 - 20
Palladium-Catalyzed
Hydrophosphorylation; General Procedure: Under argon, Pd2(dba)3 (31.1
mg, 3.0 × 10-5 mol) and Ph3P (31.5
mg, 1.2 × 10-4 mol) were placed into a septum-sealed
tube equipped with a magnetic stir bar, followed by the addition
of THF (0.5 mL) through the septum, and the mixture was stirred
for 3 min. When the color of the solution became brown, the H-phosphonate
(1.0 × 10-³ mol) and alkyne (1.0 × 10-³ mol)
were added to the mixture through the septum. Then, TFA (11.4 mg,
1.0 × 10-4 mol) was added, and the
tube was capped with a PTFE-sealed screw cap. The mixture was stirred
at 50 ˚C (see Tables 4 and 5 for additional details relating
to the ratio of the reagents or conditions). After completion of
the reaction, the color of the solution remained brown or changed
to light brown
- 23
Harwood LM. Aldrichimica Acta 1985, 18: 25
References
The use of this compound to reverse the regioselectivity of a palladium-catalyzed reaction between diphenylphosphane oxide and alkynes was first reported in 1998, see ref. 9c. Later, Han et al. indicated that ‘it does not affect other palladium- or rhodium-catalyzed phosphoryl-hydrogen bond additions’, see ref. 9b; however, this additive was necessary to control the direction of phosphoryl-hydrogen addition in the case of the nickel system. Tanaka et al. have questioned the potential application of this additive for practical implementation in a recent study, see ref. 16. An acceptable mechanistic picture describing the influence of this additive on the regioselectivity of the addition reaction is not available thus far.
17The ‘activated’ nature of the cyclic H-phosphonate facilitated the preferred formation of double addition product 7 in the palladium-catalyzed reaction, rather than the formation of product 3, e.g. see ref. 11.
18See Supporting Information for a detailed description.
21Compound Isolation and Purification: After completion of the reaction, the products were purified by dry-column flash chromatography on silica gel, see ref. 23. Hexane-EtOAc (for 3a-c, 3e-i, 4a, and 10) and hexane-EtOAc-EtOH (for 3d) gradient elution was applied. After drying in a vacuum, the pure products were obtained. The products were isolated as colorless or light-yellow oils, and their isolated yields given in Tables [4] and [5] were calculated based on the initial amount of the corresponding H-phosphonate.
22Complete characterization of all the isolated products with ¹H, ¹³C, and ³¹P NMR spectroscopy, mass spectrometry, and microanalysis is provided in Section 6 of the Supporting Information.