Subscribe to RSS
DOI: 10.1055/s-0029-1217965
One-Pot Synthesis of 1,2,3-Triols from Allylic Hydroperoxides and a Catalytic Amount of OsO4 in Aqueous Acetone
Publication History
Publication Date:
09 September 2009 (online)
Abstract
Allylic hydroperoxides were converted into the corresponding triols in the presence of a catalytic amount of OsO4. The present reaction involves regeneration of active osmium species by the hydroperoxide functionality and occurs in a diastereoselective manner to form triols in high yields. A plausible mechanism for the formation of 1,2,3-triols from allylic hydroperoxide is presented.
Key words
osmium tetraoxide - allylic hydroperoxide - triols - intramolecular oxygen transfer
-
1a
Gültekin MS.Çelik M.Balci M. Curr. Org. Chem. 2004, 8: 1159 -
1b
Hudlicky T.Luna H.Price JD.Rulin F. J. Org. Chem. 1990, 55: 4683 -
2a
Kim KS.Park J.Ding P. Tetrahedron Lett. 1998, 39: 6471 -
2b
McCasland GE.Naumann MO.Duhram LJ. J. Org. Chem. 1996, 61: 3079 -
2c
Gültekin MS.Çelik M.Kurt E.Tanyeli C.Balci M. Tetrahedron: Asymmetry 2004, 15: 453 -
3a
Cha JK.Christ WJ.Kishi Y. Tetrahedron 1984, 40: 2247 -
3b
Gültekin MS.Salamci E.Balci M. Carbohydr. Res. 2003, 338: 1616 -
3c
Donohoe TJ.Moore PR.Beddoes RL. J. Chem. Soc., Perkin Trans. 1 1997, 43 -
4a
Burns PA.Foote CS. J. Am. Chem. Soc. 1974, 96: 4339 -
4b
Fenical W.Kearns DR.Radlich P. J. Am.Chem. Soc. 1969, 91: 7771 -
4c
Rubottom GM.Lopez NMI. Tetrahedron Lett. 1972, 21: 2423 -
4d
Bongini A.Cardillo G.Orena M.Porzi G.Sandri S. J. Org. Chem. 1982, 47: 4626 -
4e
Fernandez C.Gándara Z.Gómez G.Covelob B.Falla Y. Tetrahedron Lett. 2007, 48: 2939 -
4f
Brown RCD. Science of Synthesis Vol. 36: Thieme; Stuttgart: 2007. p.799 -
5a
Donohoe TJ.Moore PR.Waring J. Tetrahedron Lett. 1997, 38: 5027 -
5b
Whitehead DC.Travis BR.Borhan B. Tetrahedron Lett. 2006, 47: 3797 -
5c
Johansson M.Linden AA.Bäckvall J.-E.
J. Organomet. Chem. 2005, 690: 3614 -
6a
Trost BM.Dudash J.Hembre EJ. Chem. Eur. J. 2001, 7: 1619 -
6b
Plettenburg O.Adelt S.Vogel G.Altenbach HJ. Tetrahedron: Asymmetry 2000, 11: 1057 -
6c
Shing TKM.Tam EKW. J. Org. Chem. 1998, 63: 1547 -
6d
Knight JG.Tchabanenko K. Tetrahedron 2003, 59: 281 -
6e
Hudlicky T.Abboud KA.Entwistle DA.Fan R.Maurya R.Thorpe AJ.Bolonick J.Myers B. Synthesis 1996, 897 -
7a
Frimer AA. J. Org. Chem. 1977, 43: 3194 -
7b
Adam W.Epe B.Schiffmann D.Vargas F.Wild D. Angew. Chem. 1988, 100: 443 -
7c
Murty RS.Bio M.You Y. Tetrahedron Lett. 2009, 50: 1041 - 9
Dang H.Davies AG.Davison IGE.Schiesser CH. J. Org. Chem. 1990, 55: 1432 -
10a
Chambers RD.Sandford G.Shah A. Synth. Commun. 1996, 10: 1861 -
10b
Van Sickle DE.Mayo FR.Arluck RM. J. Am. Chem. Soc. 1965, 87: 4824 -
11a
Donohoe TJ.Blades K.Moore PR.Waring MJ.Winter JJG.Helliwell M.Newcombe NJ.Stemp G. J. Org. Chem. 2002, 67: 7946 -
11b
Paulsen H.Brauer O. Chem. Ber. 2006, 110: 331 -
12a
Tong X.Xu J.Miao H.Yang G.Ma H.Zhang Q. Tetrahedron 2007, 63: 7634 -
12b
Mandel M.Hudlicky T. Synlett 1993, 418 -
12c
Dapurkar ES.Kawanami H.Komura K.Yokoyama T.Ikushima Y. Appl. Catal., A 2008, 346: 112 -
13a
Lee YJ.Lee K.Jung S.Jeon HB.Kim KS. Tetrahedron 2005, 61: 1987 -
13b
Paulsen H.Holger M. Tetrahedron Lett. 1972, 13: 3972 -
14a
Yoshihiko D.Shoji H.Tadao H.Yoshihisa I.Akira T. J. Chem. Soc., Perkin Trans. 2 1989, 275 -
14b
Yoshihisa I.Toshihiko U.Tadao H. J. Chem. Soc., Perkin Trans. 2 1984, 2053 -
15a
Paquette LA.Hartung RE.Hofferberth JE.Vilotijevic I.Yang J. J. Org. Chem. 2004, 69: 2454 -
15b
Jia C.Zhang Y.Zhang L. Tetrahedron: Asymmetry 2003, 14: 2195 -
16a
Matsushita Y.Sugamoto K.Nakama T.Matsui T.
J. Chem. Soc., Chem. Commun. 1995, 567 -
16b
Sugamoto K.Matsushita Y.Matsui T. J. Chem. Soc., Perkin Trans. 1 1998, 3989 -
17a
Blériot Y.Giroult A.Mallet J.Rodriguez E.Vogel P.Sinay P. Tetrahedron: Asymmetry 2002, 13: 2553 -
17b
Paquette LA.Zhang Y. J. Org. Chem. 2006, 71: 4353 -
18a
Foote CS.Burns P. J. Org. Chem. 1976, 41: 908 -
18b
Jeffery AM.Jerina DM. J. Am. Chem. Soc. 1972, 94: 4048 -
19a
Lee YT.Fisher JF. Bioorg. Chem. 2000, 28: 163 -
19b
Fulvia O.Francesca P. Tetrahedron: Asymmetry 1996, 7: 1033 -
20a
Parladar V.Gültekin MS.Çelik M. J. Chem. Res. 2006, 10 -
20b
Berrier C.Jounnetaud MP.Jacquesy JC.Kigabo F. Tetrahedron 1991, 47: 6681 -
21a
Pescarmona PP.Masters AF.Waal JC.Maschmeyer T. J. Mol. Catal. A: Chem. 2004, 220: 37 -
21b
Periasamy M.Kumar SS.Kumar NS. Tetrahedron Lett. 2008, 49: 4416 -
21c
Bäckvall J.-E. Modern Oxidation Methods John Wiley and Sons; New York: 2004. -
21d
Arjona O.Dios A.Plumet J.Saez B. J. Org. Chem. 1995, 60: 4932
References and Notes
Typical Procedure
for the Formation of Triols
Allylic hydroperoxide
(10 mmol) was dissolved in a mixture of H2O-acetone
(20 mL, 1:9) solution and OsO4 (0.02 mmol, 5 mg) in acetone
(5 mL) was added to the stirring solution of hydroperoxide. The
mixture was stirred at r.t. at 22-65 h (examples in Table
[¹]
). The reaction was monitored
by TLC. The solution was evaporated (2.7˙10-² bar,
r.t.), and then the crude residue was directly purified by column chromatography
on silica gel using EtOAc-hexanes as eluent to give the
corresponding triols (Table
[¹]
).
rac
-2,3-Dimethylbutane 1,2,3-Triol
(2a)
¹H NMR (200 MHz, CDCl3): δ = 1.02
(s, 3 H), 1.18 (s, 3 H), 1.21 (s, 3 H), 3.44 (d, J = 11.3
Hz, 1 H), 3.83 (d, J = 11.3,
1 H) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 22.1,
26.6, 27.2, 70.1, 77.5, 77.9 ppm.
rac
-Cyclopentane-1,2,3-triol
(4a)
¹H NMR (200 MHz, CD3OD): δ = 1.39-1.83
(m, 2 H), 1.91-2.18 (m, 2 H), 3.69-3.79 (m, 1
H), 4.01-4.12 (m, 2 H) ppm. ¹³C
NMR (50 MHz, CD3OD): δ = 31.5, 31.8,
74.6, 79.2, 82.7 ppm.
rac
-Cyclopentane-1,2,3-triyl
Triacetate (4b)
¹H NMR (200 MHz,
CDCl3): δ = 1.49-1.61 (m,
1 H), 1.74-1.81 (m, 1 H), 2.02 (br s, 9 H, 3 CH3),
2.23-2.44 (m, 2 H), 5.09-5.23 (m, 2 H), 5.28 (m,
1 H) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 22.5,
22.6, 22.8, 28.6, 28.8, 74.1, 77.9, 78.4, 171.8, 171.9, 172.2 ppm.
rac
-Cyclohexane-1,2,3-triol (6a)
¹H
NMR (200 MHz, CD3OD): δ = 1.20-1.87
(m, 6 H), 3.34 (dd, J = 2.7,
8.5 Hz, 1 H), 3.75 (m, 1 H), 4.01 (m, 1 H) ppm. ¹³C
NMR (50 MHz, CD3OD): δ = 21.3, 33.5,
34.9, 72.9, 73.1, 79.1 ppm.
rac
-Cyclohexane-1,2,3-triyl
Triacetate (6b)
¹H NMR (200 MHz,
CDCl3): δ = 1.57-1.97 (m,
6 H), 2.01 (s, 3 H), 2.05, (s, 3 H), 2.19, (s, 3 H), 4.90 (dd, J = 3.0, 9.1 Hz,
1 H), 5.05 (m, 1 H), 5.32 (m, 1 H) ppm. ¹³C
NMR (50 MHz, CDCl3): δ = 20.3, 22.5,
22.8, 23.9, 29.9, 30.8, 71.9, 72.3, 74.4, 168.1, 171.8, 171.9 ppm.
rac
-Cycloheptane-1,2,3-triol
(8a): ¹H NMR (200 MHz, CD3OD): δ = 1.45-1.88
(m, 8 H), 3.55 (dd, J = 2.5,
7.1 Hz, 2 H), 3.70 (m, 1 H), 3.96 (m, 1 H) ppm.¹³C
NMR (50 MHz, CD3OD): δ = 25.4, 26.3,
33.4, 35.8, 74.6, 75.3, 82.2 ppm.
rac
-Cycloheptane-1,2,3-triyl
Triacetate (8b): ¹H NMR (200 MHz, CDCl3): δ = 1.42-1.66
(m, 8 H), 2.02 (s, 3 H), 1.99 (s, 3 H), 1.97 (s, 3 H), 4.86 (dd, J = 2.0, 4.2,
1 H), 4.95 (m, 1 H), 5.06 (m, 1 H) ppm. ¹³C
NMR (50 MHz, CDCl3): δ = 22.7, 22.8,
22.9, 23.8, 24.0, 29.7, 29.9, 73.9, 74.4, 78.05, 171.8 (2 C), 171.9
ppm.
rac
-Cyclooctane-1,2,3-triol (10a): ¹H
NMR (200 MHz, CD3OD): δ = 1.55-1.90
(m, 10 H), 3.65 (dd, J = 2.4,
8.5 Hz, 1 H), 3.79 (m, 1 H), 3.96 (m, 1 H) ppm. ¹³C
NMR (50 MHz, CD3OD): δ = 26.1, 27.8,
29.9, 34.0, 36.1, 73.8, 74.8, 80.8 ppm.
rac
-Cyclooctane-1,2,3-triyl
Triacetate (10b): ¹H NMR (200 MHz, CDCl3): δ = 1.45-2.01
(m, 10 H), 1.93 (s, 3 H), 1.96 (s, 3 H), 1.97 (s, 3 H), 4.92-5.23
(m, 3 H) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 22.9,
24.3, 25.6, 26.5, 28.2, 29.9, 30.9, 31.7, 73.4, 75.3, 76.4, 171.8,
172.0, 172.1 ppm.
rac
-1,2,3,4-Tetrahydronaphthalene-1,2,3-triol
(12a): ¹H NMR (200 MHz, CD3OD): δ = 7.18
(m, 4 H), 2.56-3.09 (m, 2 H), 4.64 (m, 1 H), 4.02 (m, 1
H), 3.61 (1 H) ppm. ¹³C NMR (50 MHz,
CD3OD): δ = 38.9, 68.9, 72.8, 76.5,
128.5, 128.9, 129.7, 130.3, 137.3, 138.5 ppm.
rac
-2,3,4-Trihydroxy-4-methylcyclohexanone (14a): ¹H NMR (200
MHz, CDCl3): δ = 4.22 (d, J = 5.7 Hz,
1 H), 3.72 (d, J = 5.7
Hz, 1 H), 2.22-1.84 (m, 4 H), 1.27 (s, 3 H) ppm. ¹³C
NMR (50 MHz, CDCl3): δ = 28.5, 36.3,
37.4, 74.5, 75.8, 79.9, 209.8 ppm.