Synlett 2009(17): 2765-2768  
DOI: 10.1055/s-0029-1217965
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

One-Pot Synthesis of 1,2,3-Triols from Allylic Hydroperoxides and a Catalytic Amount of OsO4 in Aqueous Acetone

Cemalettin Alp, Ufuk Atmaca, Murat Çelik, Mehmet Serdar Gültekin*
Faculty of Sciences, Department of Chemistry, Atatürk University, 25240 Erzurum, Turkey
Fax: +90(442)2360948; e-Mail: gultekin@atauni.edu.tr;
Further Information

Publication History

Received 28 May 2009
Publication Date:
09 September 2009 (online)

Abstract

Allylic hydroperoxides were converted into the corresponding triols in the presence of a catalytic amount of OsO4. The present reaction involves regeneration of active osmium species by the hydroperoxide functionality and occurs in a diastereoselective manner to form triols in high yields. A plausible mechanism for the formation of 1,2,3-triols from allylic hydroperoxide is presented.

    References and Notes

  • 1a Gültekin MS. Çelik M. Balci M. Curr. Org. Chem.  2004,  8:  1159 
  • 1b Hudlicky T. Luna H. Price JD. Rulin F. J. Org. Chem.  1990,  55:  4683 
  • 2a Kim KS. Park J. Ding P. Tetrahedron Lett.  1998,  39:  6471 
  • 2b McCasland GE. Naumann MO. Duhram LJ. J. Org. Chem.  1996,  61:  3079 
  • 2c Gültekin MS. Çelik M. Kurt E. Tanyeli C. Balci M. Tetrahedron: Asymmetry  2004,  15:  453 
  • 3a Cha JK. Christ WJ. Kishi Y. Tetrahedron  1984,  40:  2247 
  • 3b Gültekin MS. Salamci E. Balci M. Carbohydr. Res.  2003,  338:  1616 
  • 3c Donohoe TJ. Moore PR. Beddoes RL. J. Chem. Soc., Perkin Trans. 1  1997,  43 
  • 4a Burns PA. Foote CS. J. Am. Chem. Soc.  1974,  96:  4339 
  • 4b Fenical W. Kearns DR. Radlich P. J. Am.Chem. Soc.  1969,  91:  7771 
  • 4c Rubottom GM. Lopez NMI. Tetrahedron Lett.  1972,  21:  2423 
  • 4d Bongini A. Cardillo G. Orena M. Porzi G. Sandri S. J. Org. Chem.  1982,  47:  4626 
  • 4e Fernandez C. Gándara Z. Gómez G. Covelob B. Falla Y. Tetrahedron Lett.  2007,  48:  2939 
  • 4f Brown RCD. Science of Synthesis   Vol. 36:  Thieme; Stuttgart: 2007.  p.799 
  • 5a Donohoe TJ. Moore PR. Waring J. Tetrahedron Lett.  1997,  38:  5027 
  • 5b Whitehead DC. Travis BR. Borhan B. Tetrahedron Lett.  2006,  47:  3797 
  • 5c Johansson M. Linden AA. Bäckvall J.-E.
    J. Organomet. Chem.  2005,  690:  3614 
  • 6a Trost BM. Dudash J. Hembre EJ. Chem. Eur. J.  2001,  7:  1619 
  • 6b Plettenburg O. Adelt S. Vogel G. Altenbach HJ. Tetrahedron: Asymmetry  2000,  11:  1057 
  • 6c Shing TKM. Tam EKW. J. Org. Chem.  1998,  63:  1547 
  • 6d Knight JG. Tchabanenko K. Tetrahedron  2003,  59:  281 
  • 6e Hudlicky T. Abboud KA. Entwistle DA. Fan R. Maurya R. Thorpe AJ. Bolonick J. Myers B. Synthesis  1996,  897 
  • 7a Frimer AA. J. Org. Chem.  1977,  43:  3194 
  • 7b Adam W. Epe B. Schiffmann D. Vargas F. Wild D. Angew. Chem.  1988,  100:  443 
  • 7c Murty RS. Bio M. You Y. Tetrahedron Lett.  2009,  50:  1041 
  • 9 Dang H. Davies AG. Davison IGE. Schiesser CH. J. Org. Chem.  1990,  55:  1432 
  • 10a Chambers RD. Sandford G. Shah A. Synth. Commun.  1996,  10:  1861 
  • 10b Van Sickle DE. Mayo FR. Arluck RM. J. Am. Chem. Soc.  1965,  87:  4824 
  • 11a Donohoe TJ. Blades K. Moore PR. Waring MJ. Winter JJG. Helliwell M. Newcombe NJ. Stemp G. J. Org. Chem.  2002,  67:  7946 
  • 11b Paulsen H. Brauer O. Chem. Ber.  2006,  110:  331 
  • 12a Tong X. Xu J. Miao H. Yang G. Ma H. Zhang Q. Tetrahedron  2007,  63:  7634 
  • 12b Mandel M. Hudlicky T. Synlett  1993,  418 
  • 12c Dapurkar ES. Kawanami H. Komura K. Yokoyama T. Ikushima Y. Appl. Catal., A  2008,  346:  112 
  • 13a Lee YJ. Lee K. Jung S. Jeon HB. Kim KS. Tetrahedron  2005,  61:  1987 
  • 13b Paulsen H. Holger M. Tetrahedron Lett.  1972,  13:  3972 
  • 14a Yoshihiko D. Shoji H. Tadao H. Yoshihisa I. Akira T. J. Chem. Soc., Perkin Trans. 2  1989,  275 
  • 14b Yoshihisa I. Toshihiko U. Tadao H. J. Chem. Soc., Perkin Trans. 2  1984,  2053 
  • 15a Paquette LA. Hartung RE. Hofferberth JE. Vilotijevic I. Yang J. J. Org. Chem.  2004,  69:  2454 
  • 15b Jia C. Zhang Y. Zhang L. Tetrahedron: Asymmetry  2003,  14:  2195 
  • 16a Matsushita Y. Sugamoto K. Nakama T. Matsui T.
    J. Chem. Soc., Chem. Commun.  1995,  567 
  • 16b Sugamoto K. Matsushita Y. Matsui T. J. Chem. Soc., Perkin Trans. 1  1998,  3989 
  • 17a Blériot Y. Giroult A. Mallet J. Rodriguez E. Vogel P. Sinay P. Tetrahedron: Asymmetry  2002,  13:  2553 
  • 17b Paquette LA. Zhang Y. J. Org. Chem.  2006,  71:  4353 
  • 18a Foote CS. Burns P. J. Org. Chem.  1976,  41:  908 
  • 18b Jeffery AM. Jerina DM. J. Am. Chem. Soc.  1972,  94:  4048 
  • 19a Lee YT. Fisher JF. Bioorg. Chem.  2000,  28:  163 
  • 19b Fulvia O. Francesca P. Tetrahedron: Asymmetry  1996,  7:  1033 
  • 20a Parladar V. Gültekin MS. Çelik M. J. Chem. Res.  2006,  10 
  • 20b Berrier C. Jounnetaud MP. Jacquesy JC. Kigabo F. Tetrahedron  1991,  47:  6681 
  • 21a Pescarmona PP. Masters AF. Waal JC. Maschmeyer T. J. Mol. Catal. A: Chem.  2004,  220:  37 
  • 21b Periasamy M. Kumar SS. Kumar NS. Tetrahedron Lett.  2008,  49:  4416 
  • 21c Bäckvall J.-E. Modern Oxidation Methods   John Wiley and Sons; New York: 2004. 
  • 21d Arjona O. Dios A. Plumet J. Saez B. J. Org. Chem.  1995,  60:  4932 
8

Typical Procedure for the Formation of Triols
Allylic hydroperoxide (10 mmol) was dissolved in a mixture of H2O-acetone (20 mL, 1:9) solution and OsO4 (0.02 mmol, 5 mg) in acetone (5 mL) was added to the stirring solution of hydroperoxide. The mixture was stirred at r.t. at 22-65 h (examples in Table  [¹] ). The reaction was monitored by TLC. The solution was evaporated (2.7˙10 bar, r.t.), and then the crude residue was directly purified by column chromatography on silica gel using EtOAc-hexanes as eluent to give the corresponding triols (Table  [¹] ). rac -2,3-Dimethylbutane 1,2,3-Triol (2a)
¹H NMR (200 MHz, CDCl3): δ = 1.02 (s, 3 H), 1.18 (s, 3 H), 1.21 (s, 3 H), 3.44 (d, J = 11.3 Hz, 1 H), 3.83 (d, J = 11.3, 1 H) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 22.1, 26.6, 27.2, 70.1, 77.5, 77.9 ppm. rac -Cyclopentane-1,2,3-triol (4a) ¹H NMR (200 MHz, CD3OD): δ = 1.39-1.83 (m, 2 H), 1.91-2.18 (m, 2 H), 3.69-3.79 (m, 1 H), 4.01-4.12 (m, 2 H) ppm. ¹³C NMR (50 MHz, CD3OD): δ = 31.5, 31.8, 74.6, 79.2, 82.7 ppm.
rac -Cyclopentane-1,2,3-triyl Triacetate (4b) ¹H NMR (200 MHz, CDCl3): δ = 1.49-1.61 (m, 1 H), 1.74-1.81 (m, 1 H), 2.02 (br s, 9 H, 3 CH3), 2.23-2.44 (m, 2 H), 5.09-5.23 (m, 2 H), 5.28 (m, 1 H) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 22.5, 22.6, 22.8, 28.6, 28.8, 74.1, 77.9, 78.4, 171.8, 171.9, 172.2 ppm. rac -Cyclohexane-1,2,3-triol (6a) ¹H NMR (200 MHz, CD3OD): δ = 1.20-1.87 (m, 6 H), 3.34 (dd, J = 2.7, 8.5 Hz, 1 H), 3.75 (m, 1 H), 4.01 (m, 1 H) ppm. ¹³C NMR (50 MHz, CD3OD): δ = 21.3, 33.5, 34.9, 72.9, 73.1, 79.1 ppm.
rac -Cyclohexane-1,2,3-triyl Triacetate (6b)
¹H NMR (200 MHz, CDCl3): δ = 1.57-1.97 (m, 6 H), 2.01 (s, 3 H), 2.05, (s, 3 H), 2.19, (s, 3 H), 4.90 (dd, J = 3.0, 9.1 Hz, 1 H), 5.05 (m, 1 H), 5.32 (m, 1 H) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 20.3, 22.5, 22.8, 23.9, 29.9, 30.8, 71.9, 72.3, 74.4, 168.1, 171.8, 171.9 ppm.
rac -Cycloheptane-1,2,3-triol (8a): ¹H NMR (200 MHz, CD3OD): δ = 1.45-1.88 (m, 8 H), 3.55 (dd, J = 2.5, 7.1 Hz, 2 H), 3.70 (m, 1 H), 3.96 (m, 1 H) ppm.¹³C NMR (50 MHz, CD3OD): δ = 25.4, 26.3, 33.4, 35.8, 74.6, 75.3, 82.2 ppm.
rac -Cycloheptane-1,2,3-triyl Triacetate (8b): ¹H NMR (200 MHz, CDCl3): δ = 1.42-1.66 (m, 8 H), 2.02 (s, 3 H), 1.99 (s, 3 H), 1.97 (s, 3 H), 4.86 (dd, J = 2.0, 4.2, 1 H), 4.95 (m, 1 H), 5.06 (m, 1 H) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 22.7, 22.8, 22.9, 23.8, 24.0, 29.7, 29.9, 73.9, 74.4, 78.05, 171.8 (2 C), 171.9 ppm.
rac -Cyclooctane-1,2,3-triol (10a): ¹H NMR (200 MHz, CD3OD): δ = 1.55-1.90 (m, 10 H), 3.65 (dd, J = 2.4, 8.5 Hz, 1 H), 3.79 (m, 1 H), 3.96 (m, 1 H) ppm. ¹³C NMR (50 MHz, CD3OD): δ = 26.1, 27.8, 29.9, 34.0, 36.1, 73.8, 74.8, 80.8 ppm.
rac -Cyclooctane-1,2,3-triyl Triacetate (10b): ¹H NMR (200 MHz, CDCl3): δ = 1.45-2.01 (m, 10 H), 1.93 (s, 3 H), 1.96 (s, 3 H), 1.97 (s, 3 H), 4.92-5.23 (m, 3 H) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 22.9, 24.3, 25.6, 26.5, 28.2, 29.9, 30.9, 31.7, 73.4, 75.3, 76.4, 171.8, 172.0, 172.1 ppm.
rac -1,2,3,4-Tetrahydronaphthalene-1,2,3-triol (12a): ¹H NMR (200 MHz, CD3OD): δ = 7.18 (m, 4 H), 2.56-3.09 (m, 2 H), 4.64 (m, 1 H), 4.02 (m, 1 H), 3.61 (1 H) ppm. ¹³C NMR (50 MHz, CD3OD): δ = 38.9, 68.9, 72.8, 76.5, 128.5, 128.9, 129.7, 130.3, 137.3, 138.5 ppm.
rac -2,3,4-Trihydroxy-4-methylcyclohexanone (14a): ¹H NMR (200 MHz, CDCl3): δ = 4.22 (d, J = 5.7 Hz, 1 H), 3.72 (d, J = 5.7 Hz, 1 H), 2.22-1.84 (m, 4 H), 1.27 (s, 3 H) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 28.5, 36.3, 37.4, 74.5, 75.8, 79.9, 209.8 ppm.