Subscribe to RSS
DOI: 10.1055/s-0029-1217991
Anionic ortho-Fries Rearrangement, a Facile Route to Arenol-Based Mannich Bases
Publication History
Publication Date:
24 September 2009 (online)
Abstract
Phenol and 1-naphthol-based carbamates undergo the anionic ortho-Fries rearrangement to their corresponding amides. Bulky substitution at position 8 of 1-naphthol-based carbamates makes the rearrangement an exclusive reaction, even at -90 ˚C, under a variety of conditions. The amides can be efficiently reduced to the corresponding Mannich bases. A novel route to 7-[(dialkylamino)methyl]-8-hydroxy-1-naphthaldehydes is presented.
Key words
rearrangements - reductions - Mannich bases - carbamates - ortho-Fries rearrangement
-
1a
Smith M.March J. Advanced Organic Chemistry: Reactions, Mechanisms and Structure 6th ed.: Wiley Interscience; Chichester: 2001. -
1b
Van der Water RW.Pettus RR. Tetrahedron 2002, 58: 5367 -
1c
Ooi T.Keiji K. Angew. Chem. Int. Ed. Engl. 2007, 46: 4222 - 2
Trost B.Flemming I. Comprehensive Organic Synthesis Pergamon Press; Oxford: 1991. - 3
Risch N.Arend M.Westermann B. Angew. Chem. Int. Ed. 1998, 37: 1044 - 4
Specamp WN.Moolenaar MJ. Tetrahedron 2000, 56: 3817 -
5a
Pilli RA.Russowsky D. J. Chem. Soc., Chem. Commun. 1987, 1053 -
5b
Pilli RA.Dias LC.Maldaner AO. J. Org. Chem. 1995, 60: 717 -
5c
Pilli RA.Russowsky D. J. Org. Chem. 1996, 61: 3187 - 6
Xu L.-W.Xia C.-G.Li L. J. Org. Chem. 2004, 69: 8482 -
7a
Collins DJ.Hughes TC.Johnson WM. Aust. J. Chem. 2000, 53: 137 -
7b
Tian JZ.Zhang JQ.Shen X.Zou HX. J. Organomet. Chem. 1999, 584: 240 -
7c
Velásquez AM.Torres LA.Diaz G.Ramirez A.Hernádez R.Santillán H.Martinez L.Martinez I.Diaz-Barriga S.Abrego V.Balboa MA.Camacho B.López-Castañares R.Duenãs-Gonzáles A.Cabrera G.Angeles E. ARKIVOC 2006, (ii): 150 -
7d
Hon Y.-S.Chou Y.-Y.Wu I.-C. Synth. Commun. 2004, 34: 2253 -
8a
Pradham JK.Mukherjee C.Kmila S.De A. Tetrahedron 2004, 60: 5215 -
8b
Singh KJ.Collum DB. J. Am. Chem. Soc. 2006, 128: 13753 -
8c
Kauch M.Snieckus V.Hoppe D. J. Org. Chem. 2005, 70: 7149 - For synthetic applications of the anionic ortho-Fries rearrangement and other O → C carbamoyl-transfer reactions, see:
-
9a
Kalinin AV.Miah MAJ.Chattopadhyay S.Tsukazaki M.Wicki M.Nguen T.Coelho AL.Kerr M.Snieckus V. Synlett 1997, 839 -
9b
Mohri S.-I.Snieckus V. J. Org. Chem. 1997, 62: 7072 -
9c
Kalinin AV.da Silva AJM.Lopes CC.Lopes RSC.Snieckus V. Tetrahedron Lett. 1998, 39: 4995 -
9d
Kalinin AV.Snieckus V. Tetrahedron Lett. 1998, 39: 4999 -
9e
Chauder BA.Kalinin AV.Taylor NJ.Snieckus V. Angew. Chem. Int. Ed. 1999, 38: 1435 -
9f
Reed MA.Chang MT.Snieckus V. Org. Lett. 2004, 6: 2297 - 10
Focken T.Hopf H.Snieckus V.Dix I.Jones PG. Eur. J. Org. Chem. 2001, 2221 -
11a
Hamada S.Motoyama Y.Nagashima H. Tetrahedron Lett. 2006, 47: 6173 -
11b
Igarashi M.Fuchikami T. Tetrahedron Lett. 2001, 42: 1945 -
11c
Zhu H.-J.Lu K.-T.Sum G.-R.He J.-B.Li H.-Q.Pittman CU. New J. Chem. 2003, 27: 409 -
11d
Fisher GB.Fuller JC.Harrison J.Alvarez SG.Burkhardt ER.Goralski CT.Singaram B. J. Org. Chem. 1994, 59: 6378 -
11e
Cha JS.Brown HC. Org. Prep. Proced. Int. 1994, 26: 459 - 12
Lustig E.Benson WR.Duy N. J. Org. Chem. 1967, 32: 851 - 14
Cohen T.Moran RM.Sowinski G. J. Org. Chem. 1961, 26: 1 -
15a
Kawski P.Kochel A.Perevozkina MG.Filarowski A. J. Mol. Struct. 2006, 790: 65 -
15b
Sigma-Aldrich cat. no. 644234.
- 16
Saitama HW. J. Am. Chem. Soc. 2007, 129: 15102 - 18
Katritzky AR.Singh SK.Cai C.Bobrov S. J. Org. Chem. 2006, 71: 3364 - 19
Milne GWA. Drugs: Synonyms and Properties Ashgate; Brookfield VT: 2000. - 20
Hasegawa I.Sakka S. Bull. Chem. Soc. Jpn. 1988, 61: 4087 - 22
Pochini A.Puglia G.Ungaro R. Synthesis 1983, 906 - 23
Boehme H.Hartke K. Chem. Ber. 1963, 96: 604 - 24
Tanaka Y.Hasui T.Suginome M. Org. Lett. 2007, 9: 4407 - 25
Dilman AD.Arkhipov DE.Belyakov PA.Struchkova MI.Tartakovsky VA. Russ. Chem. Bull. 2006, 55: 517 - 26
Matsumoto K.Joho K.Mimori S.Iida H.Hamana H.Kakehi A. Heterocycles 2008, 76: 1061 - 27
Blade-Font A.De Mas Rocabayera T. J. Chem. Soc., Perkin Trans. 1 1982, 841 - 28
Moehrle H.Troester K. Arch. Pharm. (Weinheim, Ger.) 1982, 315: 397 - For the synthesis of compound 5, see:
-
29a
Call G.Morey J.Costa A.Saá JM. J. Org. Chem. 1988, 53: 5345 -
29b
Buisson J.-P.Roner R. J. Heterocycl. Chem. 1988, 25: 539 -
29c
Ellinger CA. Org. Prep. Proced. Int. 1985, 17: 419 - The anionic ortho-Fries rearrangement usually takes place upon warming the lithiation reaction to room temperature. See:
-
30a
Kauch M.Hoppe D. Can. J. Chem. 2001, 79: 1736 -
30b
Wang W.Snieckus V. J. Org. Chem. 1992, 57: 424 -
30c
Van Doorn AR.Bos M.Harkema S.Van Eerden J.Verboom W.Reinhoudt DN. J. Org. Chem. 1991, 56: 2371 -
30d The only other known example
of this rearrangement, occurring under similar conditions, is that
of the o-migration of the tetrazole from its aryloxy precursor.
See:
Dankwardt JW. J. Org. Chem. 1988, 63: 3753 - 31 ‘Fast’ reacting
electrophiles such as TMSCl and aryl aldehydes, when present, did
not quench the lithiated species. See:
Schnürch M.Spina M.Khan AF.Mihovilovic MD.Stanetty P. Chem. Soc. Rev. 2007, 36: 1046 -
32a
Pittelkow M.Boas V.Jass M.Jensen KJ.Christensen JB. Org. Biomol. Chem. 2005, 3: 508 -
32b
Karacar A.Freytag M.Thönnessen H.Jones PG.Barts R.Schmutzler R. J. Organomet. Chem. 2002, 68: 643 -
32c
Kirby AJ.Percy AC. Tetrahedron 2002, 58: 6901 -
32d
Balasubramaniyan V. Chem. Rev. 1966, 66: 567 - 35
Kuwano R.Takahashi M.Ito Y. Tetrahedron Lett. 1998, 39: 1017 -
36a
Charette AB.Grenon M. Tetrahedron Lett. 2000, 41: 1677 -
36b
Charette AB.Chua P. Tetrahedron Lett. 1998, 39: 245 -
36c
Charette AB.Chua P. Tetrahedron Lett. 1997, 38: 8499 - 37
Godjoian B.Singaram B. Tetrahedron Lett. 1997, 38: 1717
References and Notes
Conversion of
Carbamates to Amides (Table 1); General Procedure: n-BuLi (3.8 mL, 1.6 M sol in hexane)
was added dropwise to a stirred solution of diisopropylamine (0.607
g, 6 mmol), in anhyd THF (6 mL) at -78 ˚C under
a nitrogen atmosphere. After 20 min at -78 ˚C
a solution of the appropriate carbamate (5 mmol) in anhyd THF (6
mL) was added. The reaction mixture was stirred for 30 min at -78 ˚C, allowed
to warm to r.t., stirred for a further 6 h and then quenched with
sat. NH4Cl (5 mL). The reaction mixture was extracted
with Et2O (3 × 20 mL) and the combined organic extracts
were washed with brine (25 mL) and then dried (Na2SO4).
The solvent was removed in vacuo and the crude product was purified
by silica flash column chromatography (hexane-Et2O,
6:4) to give the corresponding amide. The structures of the products
were confirmed by comparison of their mp, TLC, IR or ¹H
NMR data with authentic samples obtained commercially or prepared
by literature methods.
N
,
N
-Diethyl-1-hydroxy-2-naphthamide (Table 1, entry 8):
Obtained as colourless microcrystals (EtOAc-hexane); yield:
0.87 g (72%); mp 50-52 ˚C; R
f
0.48
(hexane-Et2O, 3:7). IR (KBr): 3443, 3067, 2982,
2934, 1635 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.29 (t, J = 7.2 Hz, 6 H), 3.54 (q,
J = 7.2 Hz, 4 H),
7.25-7.33 (m, 2 H), 7.45-7.58 (m, 2 H), 7.78 (d, J = 6.8 Hz, 1 H), 8.41 (d, J = 7.6 Hz, 1 H), 11.41 (br s,
1 H). ¹³C NMR (100 MHz, CDCl3): δ = 13.6,
42.4, 110.6, 117.7, 123.7, 123.8, 125.7, 125.8, 127.4, 128.4, 135.6, 157.8,
172.8. ES-MS: m/z = 244.66 [M + 1]+.
Anal. Calcd for C15H17NO2: C, 74.05;
H, 7.04; N, 5.76. Found: C, 73.78; H, 7.20; N, 5.69.
Sigma-Aldrich cat. no. 642932.
21
Conversion of
Amides to Mannich Bases (Table 2); General Procedure: A solution
of appropriate amide (1.25 mmol) in anhyd THF (50 mL) was added
to a stirred solution of LiAlH4 (0.244 g, 6.25 mmol)
in anhyd THF (25 mL) at 0 ˚C. The reaction mixture was
allowed to warm to r.t., stirred for 3 h and then treated successively
with H2O (10 mL), 15% aq NaOH (10 mL) and H2O
(40 mL). The reaction mixture was extracted with Et2O
(3 × 30 mL) and the combined organic extracts were dried
(Na2SO4), filtered and concentrated in vacuo.
The crude product was purified by silica flash column chromatography
eluting with Et2O to give the corresponding Mannich base.
The structure of the products was confirmed by comparison of their
mp, TLC,
IR or ¹H NMR data with authentic
samples obtained commercially or prepared by literature methods.
2-[(Diethylamino)methyl]-1-naphthol
(Table 2, entry 8): Obtained as a dark red oil; yield: 0.18
g (65%), mp 149-150 ˚C (as HCl salt); R
f
0.14
(hexane-Et2O, 3:7). IR (KBr): 3330 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.16 (t, J = 7.2 Hz, 6 H), 2.69 (q, J = 7.2 Hz, 4 H), 3.92 (s, 2
H), 7.07 (d, J = 8.0 Hz, 1 H),
7.28 (d, J = 8.0 Hz, 1 H), 7.41-7.49
(m, 2 H), 7.74 (m, 1 H), 8.22-8.28 (m, 1 H), 11.15 (br
s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 11.3
(2 × C), 46.5 (2 × C), 57.2, 114.4, 118.0, 122.0,
124.7, 125.0, 125.8, 126.4, 127.3, 133.8, 154.0. ES-MS: m/z = 230.24 [M + 1]+.
Anal. Calcd for C15H19NO: C, 78.56; H, 8.35;
N, 6.11. Found: C, 78.25; H, 8.64; N, 5.74.
2-[(Diethylamino)methyl]-8-(1,3-dioxolan-2-yl)-1-naphthol (8b): Prepared by reducing 8-(1,3-dioxolan-2-yl)-N,N-diethyl-1-hydroxy-2-naphthamide (7b) with LiAlH4 according to the general procedure.²9 Obtained as a colourless semi-solid; yield: 42 mg (74%); R f 0.38 (hexane-Et2O, 1:4). IR (KBr): 3330 cm-¹. ¹H NMR (400 MHz, CDCl3): δ = 1.26 (t, J = 7.2 Hz, 6 H), 3.50 (q, J = 7.2 Hz, 4 H), 3.82 (s, 2 H), 4.08-4.18 (m, 5 H), 7.27-7.90 (m, 5 H), 11.45 (br s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 13.22, 41.75, 42.10, 65.09, 102.16, 114.00, 119.06, 124.16, 126.84, 129.50. ES-MS: m/z = 302.3 [M + 1]+. Anal. Calcd for C18H23NO3: C, 71.73; H, 7.69; N, 4.65. Found: C, 71.48; H, 7.54; N, 4.51.
347-[(Diethylamino)methyl]-8-hydroxy-1-naphthaldehyde (9b): Compound 8b (0.04 g, 0.13 mmol) was dissolved in a mixture of 10% aq HCl (10 mL) and THF (10 mL) and heated under reflux for 1 h. After cooling, 10% aq K2CO3 was added dropwise to the reaction mixture until pH 5, followed by extraction with Et2O (3 × 10 mL). The combined organic extracts were dried (Na2SO4), filtered and concentrated in vacuo. The crude material was purified by crystallisation from hexane-EtOAc (6:1) to give colourless microcrystals; yield: 26 g (88%); mp 128-130 ˚C; R f 0.54 (hexane-Et2O, 3:2). IR (KBr): 3335, 1710 cm-¹. ¹H NMR (400 MHz, CDCl3): δ = 1.26 (t, J = 7.2 Hz, 6 H), 3.52 (q, J = 7.2 Hz, 4 H), 3.84 (s, 2 H), 7.25-8.10 (m, 5 H), 9.93 (s, 1 H), 11.85 (br s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 41.39, 41.90, 117.54, 124.56, 131.59, 136.89, 192.12. ES-MS: m/z = 258.12 [M + 1]+. Anal. Calcd for C16H19NO2: C, 74.68; H, 7.44; N, 5.44. Found: C, 74.49; H, 7.31; N, 5.26.